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MONTE CARLO INVESTIGATION OF TRANSIENT ACOUSTIC FIELDS

IN PARTIALLY OR COMPLETELY BOUNDED MDIUM

ABSTRACT

This dissertation presents a Monte Carlo

technique for the determination of the transient radiation

fields in partially or completely bounded media. The impetus

for the selection of this topic is that the analysis of the

radiation in a partially or completely bounded medium

presents a problem of common interest in many branches of

engineering and physics; yet, at present, no satisfactory

method is available for its treatment in the general case.

In this dissertation a more general basic

technique is developed with special emphasis on applications

to acoustical field solutions. It investigates what happens

to the field in terms of signal paths of disturbance
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originating from the energy source, and based on the informa-

tion so collected reconstructs the field as a function of

space and time on a statistical basis. For this analysis a

suitable model is created from which is developed an algorithm

for the estimation of the acoustic pressure variations, as a

function of space and time, in the region under investigation.

The validity of the technique and the

algorithm thus created is demonstrated with the help of

simple physical models, analyzed on the digital computer. The

results obtained from the present work are cnompared with

other available analytical data.

At present, the applicability of the

proposed Monte Carlo technique is demonstrated when the

medium is homogeneous and is enclosed by either rectangular

or curved boundaries. Possible future developments are

indicated which would, it is believed, make the Monte Carlo

method a valuable tool when boundary conditions are complex

or when the medium is inhomogeneous.
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Chapter 1

INTRODUCTION

A Monte Carlo method is suggested for the

computation of the time-varying acoustical pressure in a

wide variety of problems. The more interesting areas in

which the Monte Carlo method is applicable are the boundary

value and the initial value problems with linear differential

equations as the governing equations.

Broadly speaking the method of determining

an action at a distance from the source of the radiation

energy is to construct a field of dynamic and thermodynamic

quantities and then to study their propagation in the

supporting medium, which in general absorbs, emits, and

scatters the radiation. In terms of wave motion the analysis

of, for example, potential and force fields, electromagnetic

and gravitational fields has been possible for considerable

time. An acoustical field is a scalar field of similar nature.

For the description of the field satisfactory approaches are
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known when the mediumn extends to infinity, but not always so

when it is bounded. The suggested Monte Carlo method is in

response to the obvious need for a numerical method to

supplement analytical methods of solution which are only

valid when the boundaries have simple shapes. An alternative

method might have been developed from finite element

techniques, they have already been applied successfully to

same fluid problems, as suggested by Zienkiewicz (1967) and

Oden (1969). However, the computer storage requirements for

such solutions in three dimensions could well be prohibitive,

and computation times excessive. The Monte Carlo method is

particularly effective in multidimensional problems.

The generally known wave motion approach

that is developed for the description of a field in a bounded

medium results in a very lengthy exercise of mathematical

analysis as it involves explicit or implicit integrations

over a variety of complex surface areas. In contrast, the

Monte Carlo technique that is developed here calls for veryt

simple repetitive calculations. It considers the problem

under investigation as a statistical problem. It investigates

what happens to the field in terms of the signal paths of

disturbances originating from the energy source, and based

on the information so collected reconstructs the field as a

function of space and time on a statistical basis.



The analysis of signal paths, from viewpoint

of the Helmholtz wave equation and the Eikonal equation, is

included in Appendix 1. Chapter 2 presents a brief survey of

the known analytical methods for the description of the

radiation field, with a highlight on the need for a more

general numerical approach to supplement them.

The problem of radiation field in a bounded

mediua is viewed in Chapter 3 on the basis of the statistical-

model; included therein also is a brief description, in

general terms, of the Monte Carlo method along with its scope

and limitations. This is followed by a systematic development

of an algorithm with special emphasis on applications to

acoustical field solutions.

The algorithm thus created is verified

critically in Chapter 4, and is shown to give the known

results. This establishes the validity of the basic technique

that is developed. Subsequent is the application of this

technique in Chapter 5, to a specific physical model consisting

of a nonconducting, isotropic, homogeneous medium enclosed by

rectangular walls. Calculations are presented for a pressure

field caused by an actuating point source with its strength

time history characterized by a double rectangular pulse,

single cycle sinusoidal pulse, and a N-shape pulse. The

results are grouped in seven different cases for material

absorption coefficients ranging from zero to one hundred



percent on different walls, with as many as six different

receiving points dispersed in the region.

The Monte Carlo results for Gase 1, all

walls perfectly reflecting, for the single cycle double

rectangular pulse source strength time history, are shown to

be in qualitative agreement with those of Mintzer (1950);

but the much needed closer quantitative comparison is not

possible in this case, mainly, due to the lack of the

knowledge of the specific normalizing factor utilized in the

Mintzer's results.

With a view of presenting a quantitative

comparison, for the case of perfect reflecting walls with

sinusoidal shape source strength time history, an analytical

solution is sought in Chapter 6 in terms of the normal modes

by the application of the Green's Function technique.

The first half of the dissertation , dealing

with the development of the basic technique and its applica-

tions, is restricted to considerations of the transient

acoustic field in rectangular rooms containing no 'sound

scattering' obstacles, having each wall uniform absorption,

and no absorption in the medium itself. The removal of each

of these restrictions will require further study; but the

basic analysis appears to be well adapted for these extensions.

The latter half of the dissertation presents an extension of

the above technique to problems where the boundaries are



nonrectangular.

In order to adapt the Monte Carlo technique,

developed in the first half of the dissertation, to the cases

of practical importance where the boundaries are not at right

angles, certain modifications become essential especially to

cover such eventualities as the occurrence of possible

focussing effects, the associated singularities, etc. in the

region under investigation. Such modifications and the

extension of the proposed Monte Carlo technique to cover the

cases of curved boundaries, not necessarily of simple geometric

shape, are studied in the latter half of the dissertation.

In view of the particular importance of the

transmission properties of the axisymmetric duct in engineering

applications, the concepts that are developed are then applied

to the prediction of the transient acoustic field caused by a

sound source inside a cylindrical duct. The results obtained

by the application of the Monte Carlo technique in this case

are then compared with those from an analytical solution based

on the theory cast in terms of the normal modes of oscillation

of the duct.

A survey of the literature indicates, as a

common technique, the use of superposition of infinite

succession of wave motions of monochromatic type, each defined

by a single frequency of oscillation, in the study of forced

vibrations and sound propagation inside a circular duct.



However, in this dissertation use has been made of somewhat

different technique in arriving at the analytical results,

the approach is to utilize the time domain instead of the

frequency domain to characterize the sound sources as well as

the field caused by them. If so desired, this time base

resulting field can always be transformed to the frequency

base by the use of the Fourier Transforms.

The problem of computing the effects of

the propagating signal in a region surrounded by a curved

boundary is identified in Chapter 7 and an expression in

nondimensional form is presented for a pressure contribution

at a receiving point that comes under the influence of the

propagating ray tube that is traced in the Monte Carlo

processing.

The process of random selection of the

source along with the direction of the ray tube, with due

consideration of the specific directional characteristics of

any particular source, is considered in the most general-

terms, with the help of flow diagrams, in Appendix 6. In

Chapter 8 is presented a detailed discussion of the processing

of the ray tube, and an algorithm is developed there for

evaluation of the pressure contribution at a receiving point

from the ray tube that is under process. Defining a quantity,

termed as 'equivalent distance',,as a function of the

divergence factor of the ray tube cross-sectional area, this
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modified algorithm for the case of curvod boundary is shown

to be in perfect agreement with that for the case of rectang-

ular boundary, developed in the earlier portion of the

dissertation.

In Chapter 9 the problem of the acoustical

pressure field inside a rigid duct of constant radius is

investigated from the normal mode point of view.

The results from application of these two

methods are presented in Chapter 10 for a particular case

where the emission is from a single point source with a

single cycle sinusoidal shape strength time history. This is

followed in Chapter 11 by a general discussion of the

developments of the Monte Carlo method.



Chapter 2

RADIATION FIELD

The sound generated at a given position of

the source, in a compressible fluid, distributes itself as

a scalar material field of radiation. It is a field that is

constructed to analyze the problem of action at a distance.

Viewed macroscopically the radiation field is an idealized

continuous function of space and time describing the dynamic

and thermodynamic state of the supporting fluid medium.

The acoustic radiation field, which may be

constructed as a solution to the initial and boundary value

problem, provides the basis for any systematic approach to

noise control, and hence is of considerable technological

importance. Depending on the extent of the supporting medium,

exterior to the radiating energy source, the radiation field

is categorized as unbounded or bounded. In the former case,

as the medium extends to infinity, only the diverging waves

originating from the radiator (Fig. la) are present. A survey

8
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of the literature indicates that a large number of satisfactory

numerical methods are available for analysis of the radiation

field when the medium is unbounded. These can be classified

broadly in two groups as

I. Differential Equation Formulation

- Mlultipoint Boundary Value Problem

II. Integral Equation Formulation

- Extension of Classical Potential Theory.

On the other hand, in a bounded medium, the boundaries are

present at finite distances from the source. In acoustics,

the physical effects of the boundary are to cause reflections

which then must be added to the wave developed by the source

to give the resultant field. Figurelb shows a typical pressure

pulse in a bounded medium; also indicated therein is a region

of superposition resulting from a wall reflection. The methods

that are known and find certain applications in the analysis

of a radiation field in a bounded medium are :

1. Separation of Variables

The problem of practical importance involves,

in general, complicated cross-sections for which the natural

coordinate system becomes extremely complicated and as a

result the problem, in general, would not be amenable to the

standard method of separation of variables.



2. Conformal Mapping

The method of conformal mapping makes use of

a technique of transforming the cross-sectional area into a

simpler one, but its success depends heavily on the availabi-

lity of the proper mapping function. This effectively rules

out its application to problems with arbitrary boundaries.

3. Green's Function

Even if it is known that the Green's function

does exist for the region under investigation, it is an

extremely difficult task to find it; and as such this method

is mostly used in the theoretical approach.

. Method of Images

The nethod of images finds applications in

certain special cases of rigid walls, but in a very few cases

the images are the real images of the source. Even in these

few special cases it is no simple task to find these images

analytically.

5. Method of Normal Modes

In the normal mode method the medium enclosed

is considered to be a three dimensional elastic body having

its own natural modes of vibration governed by the mechanical

constant of the mass of the medium and the boundary conditions

on the enclosure surface. Then the sound field in a given
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enclosure is expressed as the summation of the normal modes

involving various decay constants and normal frequencies.

Although this method shares the gain in power afforded by the

generalized coordinates in mechanical problems, its applica-

bility is limited to a few specialized cases, as in cases

involving geometries other than the separable ones, the

procedure inevitably becomes involved and complex.

This clearly brings out the fact that these

known analytical methods can be applied only in a very few

specialized cases, and there is an obvious need for a more

general numerical method to supplement them. This is afforded

by the proposed Monte Carlo technique that is developed in

this work; the central idea being to follow the propagation

of the signals of disturbance originating from the energy

source.

At every point in the medium the signal

propagates along a direction normal to the wavefront, the

locus of the wavefront normal forming the required trajectory

that is used in the Monte Carlo method as the propagational

path of the acoustic ray. In general this is a function of

a. Initial direction of any particular ray emanating

from the energy source

b. Spatial variations of the physical and thermodynamic

characteristics of the supporting medium
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c. Spatial variations of the geometric shape and the

thermodynamic properties of the boundaries that

enclose the region under investigation.

When these are specified mathematically the problem of the

determination of the ray trajectory becomes determinate, and

can be solved completely by formulating a set of equations

defining the direction of the ray successively.

In the Monte Carlo method based on the

statistical model the requisite initial direction for any

particular acoustical ray from the source is selected at

random in accordance with the directional characteristics of

the acoustical source. Such a selected ray is then traced

through multiple reflections from boundaries, and through

other events, if applicable. The pressure time histories at

receiving points are calculated by accumulating the effects

of penetrations of the rays through test cell volumes located

at these points, i.e., at the points where the pressure is to

be found. In the first half of the dissertation the method is

adapted to the problem of the rectangular room, and calculated

results are given for comparison with other calculated results,

such as those of Mintzer (1950), and those obtained by the

normal mode method.

The difficulties to be overcome in adapting

the method to more general problems are also discussed, and

necessary developments are shown to include adaptation to
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curved boundaries, to moving or inhomogeneous media, and to

problems involving diffraction. The latter poses the worst

problem, because it involves a breakdown in classical ray

acoustics. Looking further ahead, it is fascinating to

conjecture whether the rays can be treated as trajectories

of phonons, and whether, by such an approach, nonlinear

acoustical problems can be handled by considering the

interactions between such phonons.



Chapter 3

STATISTICAL MODEL AND THE

MONTE CARLO TECHNIQUE

PROBLEM IDENTIFICATION

Sound is a dynamic disturbance of equilibrium

of the physical characteristics of the supporting fluid medium.

The sound generated in one region will propagate away, reflect

from nearby walls or structures into different paths, and

redistribute itself. The analytical problem associated with

such a physical situation is the prediction of the sound field

everywhere in the fluid region under investigation from its

observable characteristics such as pressure, particle velocity,

etc. at the source surface. This requires familiarity with

the laws governing the propagation of sound through the

supporting medium, and with the relationships between such

measures of sound strength as the fluctuating pressure, the

energy associated with the fluctuation, etc. In general the

distribution of the sound field in the medium depends on the

15
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following factors :

a. Distribution of the sound sources and their

strength time histories with any directional

properties associated with them

b. Thermodynamic and physical characteristics of

the supporting fluid medium

c. Shape and thermodynamic properties of the

boundaries enclosing the region that is under

investigation.

When these are specified mathematically the problem, which is

recognized to be a combination of the initial and the boundary

value problem, becomes a determinate and, in principle, can

be solved completely; however, in practice the solution

remains tractable only in a restricted class of problems

involving simple geometric shapes, thereby suggesting an

obvious need for a more general numerical method to supplement

the known analytical ones. The proposed Monte Carlo technique

based on a statistical model and the tracing of the acousticcal

rays, whose directions have been selected randomly, through

multiple reflections from the boundaries and other events

appears to meet this requirement.
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DESCRIPTION OF THE MONTE CARLO METHOD

In general the Monte Carlo methods, dealing

with the solution of the problems by setting up equivalent

'games' in which choices are made by drawing random numbers,

are classified under two types, Probabilistic or Deterministic.

The initial and the boundary value problem in acoustics,

identified above, is a deterministic problem that can be

formulated in theoretical language but can be solved by

theoretical means only for very simple geometries. In fact,

being deterministic, this problem has no direct association

with the random processes; but when its underlying structure

is exposed it may perhaps reveal that it also describes

some apparently unrelated random processes. Practically all

problems in physics and engineering have a statistical

basis, being influenced by a large number-of factors having

approximately equal effects; but one represents these by

nonstatistical mathematical models when the samples involved

are extremely large. For complex problems the analytical

description may be practically impossible; however, the

statistical simulation and its successful investigation may

be possible with the application of the Monte Carlo method.

This permits the solution of the determinstic problem under

investigation numerically by Monte Carlo simulation of the



concomitant probabilistic problem. It is expected that in the

limiting case of the large number of samples the solution

thus obtained will converge to the same limit as the physical

process that is represented. In fact one of the most serious

limitations imposed on the Monte Carlo method is that a very

difficult choice must be made between the desired accuracy

and the economy. A general discussion of the error analysis

and the probability estimates of the Monte Carlo results is

included in Appendix 2. Access to a high speed digital

computer is essential in Monte Carlo applications.

Monte Carlo methods are recent innovations,

since general programmes are generally unavailable special

methods must be created to suit individual problems. Since

economic considerations will keep the level of the sample size

in any particular solution relatively small, it is expected

that the results are subject to random fluctuations and hence

can be quoted only in the limits of plus and minus a standard

deviation from the statistical mean. Then as shown in Appendix 2

the exact solution of the simulated problem can be estimated

to be within the limits of plus and minus one standard

deviation about 68 % of the time.

It pays to scrutinize the problem to see

whether any part of the experiment could well be replaced by

an exact theoretical analysis, since such a replacement will
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cause no uncertainty. To escape the formidable or even

impractical amount of experimental labour it be essential to

change or at least to distort the original problem.

A procedure that can be used to establish

the magnitude of the statistical variability is the very

simple one of repeating the runs. The root cause for such a

variability is the whole set of random numbers that get

employed in any Monte Calo application to represent the

various processes involved. Usually this simple procedure of

repeating the runs, treating these as independent samples

until the variability has been reduced to the desired level

is not feasible due to the large amount of the computational

labour involved to obtain any single sample. The quantity

under examination is often highly variable; if not, in fact,

its mean value could have been estimated by some deterministic

approach. In order to make the Monte Carlo application

economically competitive it is highly desirable to implement

one or more of the variance reducing techniques, such as,

Stratification, Control Variates, Antithetic Variates, etc.

What most of these methods have in common is that they do not

introduce bias into the estimation and thus they make the

results more precise without sacrificing reliability. A

judicious use of any of the above methods calls for a deeper

thought in the problem. Since no attempt was made to use such

sophisticated techniques here, there is no necessity to dwell
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on this subject here; Kahn (1954), Tocher (1963), and

Hammersley (1965) provide certain discussion on this topic.

APPLICATIONS TO ACOUSTICAL PROBLEMS

The Monte Carlo method defies description

beyond that already given in general terms; however, the

particular acoustical model that is used in this work here

can be described as follows.

A probabilistic model is used, by means of

which the pressure time history at any receiving point in the

field can be computed by superimposing the effects of many

individual 'wavelets', representing the disturbance generated

by the source, transported along the rays of propagation. In

order to obtain the results within a reasonable computing

time, the receiving point is represented by a small elemental

test cell surrounding it; and the mean pressure within any

small time increment is obtained by summing the times of

transit of the rays through the test cell.

The rays are assumed to consist of small

tubes or bundles originating with a given elemental solid

angle from the acoustical source, having intensities,

directions, and times of origin which have been selected

at random, in accordance with the spatial, directional,

and timewise distributions of these sources. Each ray is
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traced taking account of its interaction with boundaries, or

with the gradients in the medium through which it is transm-

itted. Events occuring during the lifetime of any particular

ray may be of two kinds; causal, such as when it reflects off

a solid boundary; or probabilistic, such as when losses at a

wall are accounted for by a 'sudden death' game. Tracing of

a particular ray is terminated either when the required

solution time is elapsed, or when it has been terminated in

a sudden death. During all of this time, the pressure time

history is determined at preselected 'receiving points',

i.e., points at which the pressure is desired, by using

appropriate sampling techniques. For this analysis a suitable

model is created from which is developed an algorithm for

the estimation of the acoustic pressure variations in the

region under investigation.

STATISTICAL MODEL

Any mathematical model of a physical system

requires the following three parts :

1. A conceptual, idealized physical model of the

actual system

2. A method to solve the equations describing the

idealized physical model

3. A computational procedure to implement item 2.
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The ultimate measure of a mathematical model is the degree to

which it produces satisfaction to its user. This satisfaction

can usually be produced when the computed values agree with

the reliable experiments. An alternative method of checking

the validity of any new technique is the application to a

very simple physical model that is amenable to another

proven technique, and the subsequent comparison of the two

results. When this latter course of comparison is adopted,

as is the case in the present work, a proper consideration

must be accorded to the fact that the method selected for

comparison might not be an exact but an approximate one.

Obviously the better verification is afforded by the former

course of comparison.

Governing Equation for the Pressure Field

The first step is to formulate a conceptual,

idealized physical model of the acoustical system that is to

be analyzed. The generated sound in the region under investi-

gation is considered to be a collective effect of a certain

distribution of sound sources. In the absence of these sound

sources, let the medium be stationary, and its physical state

be described by a pressure field with a constant value, say

PO" The introduction of the sound sources causes the pressure

in the medium to fluctuate. Let P(xr,t) be the total pressure

at a receiving point xr in the field at time t, the underscore
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(-)'denoting the vectorial quantity. The distribution of the

pressure field is governed by the nonhomogeneous wave equation

( 1 / c2 2 P / 3 t2 2 P - R.H.S. ( 1 )

where c is the characteristic wave velocity; it is the

velocity at which the pressure disturbance propagates in the

supporting fluid medium of characteristic impedance e 2 ,

Sbeing the mass density of the medium. In Eq. 1 the term

'1R.H.S.' is interpretable as a strength distribution of

simple acoustic sources per unit volume.

Assumptions

The classical Wave Equation of linear

acoustics is expressed as

( 1 / c 2 ) 2 P / t 2 ) - 2 P - 0 ( 2 )

This is obtainable from the more general Navier-Stokes

equation of fluid motion under certain restrictive

assumptions, the more important of them are enumerated below,

the less important such as body forces, chemical reactions,

etc. are omitted.

I. The fluctuating acoustical pressure p(xr,t)

given by

p(~,t) = P(xrt) - PO 3 )



is sufficiently small compared to the equilibrium

pressure POo This implies the proportionality of

the deformations and the stresses caused by the

perturbation. This approximation will require

reexamination when the mean square pressure

levels are of the order of 130 dB.

II. Thermo-viscous dissipation is negligibly small.

Inclusion of these effects is possible, but the

mathematical complexity will obscure the basic

problem.

III. In case of the sound generation by the turbulence,

the cross-correlation between the sound field

and the turbulence is small enough to allow the

decoupling of the two equation sets. This permits

the examination of the sound field independently

of the turbulence field. This assumption is seen

to be invalid in the proximity of the sound

sources.

These assumptions allow the separation of the wave equation

from the equation of motion.

Monopole Field

In the study of transient sound generation

in a given acoustic cavity, the notion of the multipole

representation of the acoustic sources can be used profitably.



The very useful conception of a monopole,

commonly known as a 'point source' was introduced into the

subject by Helmholtz. The position of a point source in the

field is the location of a 'point singularity'. At such a

point, one can imagine, that a fluid is introduced or

abstracted at a certain rate. In the presence of certain

volume distributed monopoles the pressure field is govrrned

by the wave equation

( 1/ 2 ) 2 P /-) t2 - 2 P D- m/ t ( )

where m is the rate of mass injection per unit volume, the

overhead dot ( ) denotes the differentiation of the quantity

with respect to time. In Eq. 4 the R.H.S. term 3 m/3 t

represents simple sources of strength 2 m/D t per unit volume

considered as a source for the pressure, and not for the

velocity potential.

Let 0 be the reference point, origin, inside

the volume V' (Fig. 2 ) of the fluctuating medium representing

an entity of volume distributed acoustic sources. Within this

volume V1 consider an elemental volume dV'(xa) representing a

point source at the position xs . Let xr be a receiving point

external to VI; then defining as the retarded time

S= t-R/c ,where R = Xr -Xs (5 )
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Fig. 2. Volume Distributed Acoustic Sources

it is possible to express the pressure contribution from this

entity of the volume distributed acoustic sources at the

receiving point xr at time t as a solution of Eq.

represented by, using Eq. 3,

p(rt) = (1/4) (i/R) m(xs, )/)t dV'(xs) ( 6 )
VI

When the linear dimension of the fluctuating

region VI is small compared to the distance R, i.e. when the

relation
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(V )1/3 /R <<< 1 ( 7 )

is satisfied, it is possible to approximate Eq. 6 by

p(xr,t) = (v'/47R) (D 2/ tt2 ) m(xs,) ( 8 )

In other words, the pressure field at the receiving point

xr  due to the distributed acoustic sources, is eguivalent

to that due to a concentration of the total sources at a

single source point x when the relation given by Eq. 7 is

satisfied. An equivalent form of Eq. 8 is

p(x,t) /1+7[R) Q(xs,) ( 9 )

where Q(x ,t) is the rate at which the fluid material is intro-

sduced at x s by a point source located there and represents

its strength as defined originally by Helmholtz.

When the region is unbounded, Eq. 8 or 9

provides the sufficient information in regards the time

history of the pressure contribution at a given receiving

point xr resulting from the action of a point source located

at x s . It is assumed here that the medium is homogeneous and

is at rest initially.
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Finite Representation of the Source

As stated earlier, in the present statistical

model, the generation of sound in a given acoustic cavity is

considered to be a collective effect of distributed sound

sources. From a given distribution, now, consider a represen-

tative source; if it is not adjacent to the solid boundary,

and has no preferred directions as its characteristics, it

would emit isotropically in the medium. It is characterized

by its spatial location in the cavity, its time of origin,

and its strength time history. Figure 3a is a typical

strength time history of an acoustical point source. Its

time period T is divided into a finite number of intervals

p

2 n/.AT ( 10)

where AT is a width of any individual interval. The strength

of the source in each of these intervals is approximated as

constant. The use of an equivalent finite number of elementary

pulses, as shown in Fig. 3b, then provides the requisite

finite representation of the acoustical source. Out of these

2 np elementary pulses any particular one is defined by

its strength Q

and its time of origin ti = (i- )A ( 11 )

where i is an integral index such that

1 i 2np
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Random Pulse Selection

Now at this stage an elementary pulse is

selected from this aggregation. There are number of ways to

accomplish this with varying degree of sophistication,

probably the simplest one would be to generate an integer

random number and then to pick a corresponding pulse. In

computer applications, this needs a generation of string of

random numbers, which forms the essential element of any

Monte Carlo method.

Generation of Pseudo Random Numbers

It was mentioned above that a source of

random numbers is required from which they can be drawn in

succession. When a routine is to be checked, it is of great

convenience to be able to draw the same set of random

numbers each time the calculations are repeated, thereby

making the random numbers used in the Monte Carlo application

not truly random but 'pseudo' random.

Hull (1962) has presented a rather complete

treaties on various random number generators. The so called

tMultiplictive Congruential Method' of generation requires

a starting integer y, an integer a as a multiplier, and a

modulus m which is greater than a or y. The maximum period

of the resulting sequence of numbers is given by m, and this

is chosen as a power of two for a binary computation.
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Real type random number. The algorithm

that is used for the generation of a string of 'pseudo'

random numbers in the present work is selected from the

'Collected Algorithm Computer Programs' 266-P-1-0 CACM. This

is based on the multiplicative congruential method of

generation of random numbers. It utilizes an integer 3125 as

a multiplier and 67108864 (= 2E 26 ) as a modulus. The exact

procedure here is as follows :

integer : y

real : fR

--before first use

set y = any oddg integer such that

y < 67108864

begin

7 = 3125 x 7

y ( - y / 67108864) x 67108864

S=y / 67108864

end. (12 )

This provides R as a random number of type real such that

0 < R < 1 (13)

An important property that is utilized in

-the present application is that the continuous random variable

IR obtained by this method has a uniform distribution over

the interval [0,11 . A uniformly distributed random variable
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represents the continuous analog to 'equally likely outcomes'
in the following sense. For any subinterval [t,t t j1]where

0 t <' t + At  T (Fig. 3)

the probability that the random variable R lies between t and

t + is the same for all subintervals having the same length

AT. That is the probability

P(t . R 4 t Rci. ) = Y/ T (14)
p

and thus depends only on the length of the interval and not

on the location of that interval.

Integer type random number. The required

integer random number i in Eq. 11 above, for the pulse

selection, is obtained as

i = INT[ IR)x (2np + 1] (15)

where the real type parameter of the product ( F ) x (2 n )Pp
is converted to the integer type. All the integers upto 2 n

P

are seen to be equally probable for the value of i given by

Eq. 15. A pulse corresponding to this integral index i is the

random selected pulse (Fig. 4a). It is defined by its strength

Qi and its time of origin ti (Eq. 11).
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Random Ray Selection

At the time of its origin, the selected

pulse emits isotropically in the medium. The directions of-

the emitting rays, which are normal to the disturbance

wavefronts, are infinite in number; only a few of these are

shown in Fig. 4b. It is necessary to select one of these.

The method that is adopted for this, given by Haviland (1965),

is to pick a point, say A, at random on a unit circle with

polar coordinates, say R, E (Fig. A3.1, Appendix 3). This is

accomplished by picking two Cartesian coordinates, say Xl, X2,

at random, both in the range -1 to+l, and rejecting them if

the point A lies outside the unit circle. Let R1 and VR2 be

two random numbers; then

Xl -  2 R1

X2 = 1 - 2 R2 ( 16 )

R2  X1 2 + X2 2

If R2 5 1 values of the random numbers Rl and TR2 are

accepted; otherwise rejected, and a new set of random

numbers is tried. Over a long period, 7C/ 4 tries will be

successful, and this defines the 'efficiency' of the method.

This is a Monte Carlo method of random direction selection;

in Appendix 3 it is examined in more details and also included

there is its comparison with an alternative method that is
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conceived on pure geometric considerations.

Let DC1(=,cos,), DC2(= cos(), DC3( cos/Y)

represent the direction cosines of the unit vector in the

direction of the propagating ray, at the source position

(Fig. A3.1, Appendix 3); then

DC01 = -2 R2

Dc02 2 X1 (I R2)

DC3 = 2X2 (1 R2 ) (17)

This completes the specification of the initial direction

vector for the ray selected at random.

Rather than following a single ray to

represent the signal propagation, it is more convenient to

follow a small ray tube (Fig. 4c) consisting of a bundle of

rays originating from the energy source within a given

elemental solid angle ASL centred around this selected ray.

Influence of the Randomly Selected Ray

Consider, now, the influence of the

randomly selected pulse with the integral index i, strength Qi'

and time of origin ti , Further, let its influence be confined

to a ray tube, as defined above, centered around the randomly

selected ray(o( , ,' ). This is traced, taking into account

its interaction with boundaries, or with gradients in the

medium through which it is transmitted. At any point along
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its trajectory, the name of such a ray tube is constituted

by its direction, its coordinates, and its weight. A weight

of the ray tube represents its intensity. Its original

weight is Qi"

In the absence of physical, or thermodyna-

mical gradients in the supporting fluid medium, the rays

originating from the energy source propagate essentially in

paths composed of straight lines from one boundary to another.

Figure 5 shows first few reflections from the rectangular

walls.

Now since the influence of the selected

pulse is assumed to be confined within the ray tube that is

traced, it is essential to examine whether at any instant

during the progress, the receiving point falls within the

influence of this ray tube; then and only then there could

be a pressure contribution from this pulse at that particular

receiving point in the region.

- . Pressure in an unbounded medium. Consider

now the effect of the previously selected pulse of integral

index i. At the time of its origin in the short interval of

time, say, from ti to (tii ) it produces a localized

disturbance in the immediate neighbourhood of the source

position xs . At a subsequent instant t greater than ti, its

effect is localized in a very thin spherical shell with
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centre xs, and radius c(t-ti). Now if tm represents that

particular instant at which the propagating disturbance

arrives at the point in question, the pressure contribution

from this pulse can be expressed, using a 8-function along

with Eq. 9, as

p (x,t) = ( .Ra) Qi (t - tm - ti)  18

where Rm x- x c(t - ) c(t - ti)

Pressure in a bounded medium. In general,

now, if the variable R in Eq. 18, or R in Eq. 9, is definedm
to be the arcual distance along the trajectory of any

particular signal originating from the source position upto

the point in question, Eqs. 9 and 18 hold even when the

medium is bounded, only the difference is that in the case

of a bounded medium proper account needs to be taken of the

multiple reflections that the ray suffers before arriving at

the receiving point.

This effect of multiple reflections can be

handled relatively easily when the boundaries enclosing the

region form rectangles. It is this case that is treated

presently; whilst the situation resulting in the case of

nonrectangular boundaries is studied in greater details in

the latter half of the dissertation.
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Let an infinite set Rim, m 1 too ,

represent all of the possible distances travelled by the

selected ray (cK, ( , ) characterizing the ith pulse, from

the source position to the point in question; then using

Eq. 18 above, the pressure time history at this point

resulting from this ith pulse is

Co

pi(,t) = pim(xrt)

m=l

Co

-- ( /4TRim)Qi S (t -t t ) (19)
m=-l

where tm t i + Rim / c

The concept of the method of images

provides a means of visualizing this result more clearly. In

this method, as shown in Fig. 6 for the case of perfectly

reflecting walls of a rectangular room, an infinite array of

image rooms is constructed, each containing an image source.

The pressure at the receiving point is the sun of the effects

of all of these image sources plus that of the true source.
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Finite cell transient period. The total

transient period, for which the solution is sought, is divided

up into, say, J time cells, each of duration A t; and the

pressure pimj is considered to be the mean value of the

pressure pim(Xrt)s given by Eq. 18, taken over the jth time

interval, resulting in an expression

Pimj(xr) = (1/At) P (xrt) at

j,,t - 1

~AT Q /I 'lat Rim

if the ray passes through the

receiving point for the mth time

thduring the interval

= otherwise. ( 20, )

Pressure accumulation alternate method. The

method Just described is further investigated in the latter

part of the dissertation, where the Monte Carlo technique of

the present part is modified to cover a larger class of cases

of practical interest involving boundaries that are not at

right angles to each other; however, a simpler alternative

method is possible for rectangular boundaries that are



investigated here. This consists of introducing a small

parallelepiped test cell of an elemental volume AV at the

receiving point, and then determining the penetration A R of

the propagating ray into it, alongwith the travel distance R

of this ray tube starting from the source upto the penetration

point. The two methods are shown in Fig. 7.

Let LRim and Rim be the length of penetra-

tion and the travel distance, respectively, for the ray tube

that is under process; then the time spent by the ray in the

test cell is given by

Ati= AR / c (21)

The pressure contribution resulting from such a penetration

can then be expressed as

im.(r) Qi/7 . Rim. (A im /At).

(R c A Ta.L / AV)

where 5 = t /Zt t 1

(ti R im/ c) / At + 1 ( 22 )

The first term on the right hand side of Eq. 22 corresponds

to that of Eq. 18, the second term is the sample correction

factor which is the ratio of the penetration time interval to

the averaging time interval; whereas the third term is the
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ratio of the volume occupied by the ray tube to the test cell

volume, and covers the probability that the ray will miss the

test cell altogether.

Thus goes the processing of any particular

ray tube with the accumulation of its influence at a given

receiving point in the region under investigation. Either

when the time index 3 exceeds the limiting value J, which

corresponds to the total transition period length, or the

intensity of of the ray tube drops below a predetermined

level, the processing of that particular ray tube is

terminated; and the process is repeated for, say, a total

of N ray tubes in a particular Monte Carlo run. Each ray

tube represents, separately, a randomly selected pulse.

Normalized Pressure Value

It is recalled that the time period T of
p

the source was subdivided into 2 n equal intervals of width

A , and that the ray tubes which were used to represent

the source strength time history were considered to be

centred around a randomly selected ray with a solid angle LS;

then since 47c represents the total solid angle, the total

number of pulses N that could have been selected is given by
p

N (p7/AAL 2 n 4C /ASLA'( 23)
p p p



Finally, the expected pressure is obtained

by averaging over all of the N pulses that were followed,

and normalizing by multiplication by the total number of

pulses N . Then the resulting acoustic pressure, in the
p

thnormalized form, in the jth time interval, can be expressed,

using Eqs. 21, 22, and 23 as

N

p (r) =(N/ NI piM r
i=l m

N

(N T / VN V t) QR , ARi
i=1 m

N

- ( T /NAV At) RQi i (i2 4e)

i =1

p n . i  24)

In the last expression, for simplicity, the index m and its

corresponding summation sign have been suppressed with an

understanding that in a closed acoustic cavity a particular

selected ray, representing a random pulse, can pass through

a given receiving point many number of times, thus making

pressure contributions there at those instances, as a result

of the multiple reflections the ray suffers during its life

time trajectory.
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The relation given by Eq. 24 is now divided

on both sides by c29 the characteristic impedance of the

supporting medium, to yield the following expression for the

expected pressure in the nondimensional form

N

p (C) = T N7 N 2  t) V R A R
p

i-1

where p (xr ) = pj(Xr) / f 2 (25

the overhead star (*) denoting the variable in

nondimensional form.

Statistical Fluctuations

As pointed out earlier the economic

considerations, in general, keep the sample size N relatively

low; and as a consequence, the results obtained from the

statistical algorithm of Eq. 24 would obviously show certain

random fluctuations. In such circumstances it is essential to

have the knowledge of the standard deviation; which is

obtained by repeating the calculations leading to Eq. 24 in,

say, K different blocks with the sample value in any individ-

ual block k, where 1 k 4 K, is given by Nk The results

for this can be expressed as
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N
k

[pi (Zr) I k (T / N k c 2 V At) Z R. AR

i=1

(26)

which is just an alternative form of Eq. 25.

Now by assigning equal statistical weight

to each selection the required pressure field, which is the

statistical mean of all of the samples, is given by

K

Sr j P )]k 27 )

k=1

where Wk is the statistical weight defined as

K

Wk =Nk Ni (28)
i=l

The variance of such a pressure field is given by

D2  k*(2x j r) 2
k=l

2

P ( 29
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where 6- is the required deviation of the predicted

pJ acoustical pressure in the jth time interval

at a given receiving point xr .

A flow diagram showing the computer logic

necessary to perform these calculations is given in Fig. 8.

Before applying the technique thus developed, to a specific

problem, it is essential to examine its validity in more

detail; this is done in the following chapter.
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Chapter 4

VERIFICATION OF THE ALGORITHM

The proposed Monte Carlo approach for

applications to acoustical field solutions being a new one,

it is prudent to check its consistency by considering the

results that would be obtained by solving a few simple

problems. The first solution that is considered here is that

of a source in an unbounded medium, whilst the second is

that of the ultimate average pressure rise that to be

expected in a rectangular room; both are treated in the

present chapter by evaluating the algorithm of the Monte

Carlo technique, given in Eq. 24 of the preceding chapter,

and then comparing with the known solutions.

SOURCE IN UNBOUNDED MEDIUM

The problem is illustrated in Fig. 9. An

isotropic point source of strength Q(t), such that the

quantity Q(t) is constant over its total period T (>>At),

sp

50
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is surrounded by an annular test cell of mean radius R(=ct),

thickness AR(=c At), and thus of volume

AV - 7 R 2 A R ( 1)

Let j be the time index corresponding to the time interval

from (t-at/2) to (ttat/2), and N be the total number of rays

selected to characterize the complete strength time history

of the source of period T ; then that corresponding to the
p

elemental time interval At is given by

n NAt T (2)

During the interval of the jth time cell every selected ray,

out of these n, penetrates the test cell volume for a

distance
AR. AR (3)im

and at a mean distance of travel

R. -- R (4)im

Substitution of these values into Eq. 24 of Chapter 3 results

in the following expression for the acoustic pressure during

the jth time interval

P wh Q/ 47 R  (5)

which is the known analytical solution for the problem.



SOURCE IN BOUNDED MEDIUM

Consider a point source acting in a bounded

medium of volume V. The position of the point source, it is

recalled, is a point of singularity where the fluid is

introduced or abstracted at a certain rate, and the volume

Q(t) thus introduced per unit time represents the strength of

the source in auestion. At any time t, the fluid volume

introduced by the source then can be expressed as

t 'Cto
dV(t)~ " Q~L d,4,A. dT

0 0

t
t

0 0 01
(6)

If the source only operates for its period from t=O to t =T p'

and cuts off at t=T satisfying the condition
p

T
p

S (t) dt 0 ( 7

0

then the final volume introduced by this source can be

expressed as(using Eqs. 6 and 7 above)
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dV(t >T ) = dV(T )
p p

t

0

Consider now the source strength time

history of the source to be replaced by its equivalent finite

approximation CFig. 3) consisting of 2n elementary pulses;
p

then Eq. 8 takes the form

2n
p

dV(t ) = - iQ for t > T

i=l1

Since this relation represents the final fluid volume

introduced by the source, the total change in the density of

the fluid medium, resulting from the activation of the

source in question, is given by

d (t ) = dV(t ) /V

or in other words,

d f (t ) / = dV(t) /V
2n

p

- - ( Zn/ - ) ti i ( 9 )



When this is small compared to unity, the pressure changes

can be taken proportional to changes in the density, and the

resulting acoustical pressure can then be expressed as

p(t) = 0. d (t) / ( 10 )

where ' is the elasticity of the medium and is given by

( c 2  , for isothemal compression

5 c2 /y , for adiabatic compression

C 11 )

Sis the ratio of bwo specific heats of the fluid,

for air Y=1.402.

Now consider the expected pressure rise

predicted by the Monte Carlo method, using Eq. '21 of Chapter 3

Because the selection of any one of the 2n pulses is equally
p

possible, it is readily shown that

7N

E pj = ( p/N AV At. E QR. R m

= ( c LT/AV at) ~ Qi. (t -ti). E[R}

i=l

( 12 )



where E I{AR is the expected value of the penetration

distance. This is most readily obtained, for the case of a

rectangular room, by using the method of images as shown in

Fig. 10, and considering the effect of all of the image

sources. The total number of such images which can influence

the pressure pj is the number in an annular volume of radius

c(t j-t.) and thickness cAt. Since there is one source per

room of volume V, the total number is

74.c 3 (t -ti) 2 At / V

This number is actually equal to the number of reflections

in the room during the corresponding period. The expected

penetration into the test cellAV of any one of these is

equal to

AV / 4 T c2 (t.-t i )2

3 1

Therefore the expected value of the penetration is the

product of these, so that

E AR = c AV At / V (13

Substituting into Eq. 12, assuming the cut off condition

given by Eq. 7 to hold,
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2n
p

E pjj (c 2 6/ V . (t -t.)

2n
P

- ( o 2  't/ V) t. . Q , for tj>t i

i=l

(14)

which is in agreement with Eq. 10, in the light of Eqs. 9

and 11.

This provides the requisite verification of

the Monte Carlo technique, and thereby confirms the algorithm

that is given in Eq,. 2 of the preceding chapter.



Chapter 5

CALCULATIONS FOR RECTANGULAR ROOM

RECTANGULAR ROOM PROBLEM

The sound received at one point from any

other point in the same room has two parts; that received

directly and that received along a number of indirect paths

involving reflections at the boundary walls. It has been

realized for a long time that the reflection pattern in a

room, the background noise, and certain characteristics of

hearing are the major factors that govern the room acoustics;

but exactly how these factors combine to give the ultimate

results has not been very clearly understood. Nevertheless

the quality of speech and music, for example, in a room is a

function of the reflection pattern.

In general a sound source can be represented

as pulsed wave trains. Most sounds of speech and music can

59
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be classified as pulsed wavetrains whose amplitudes and

frequency components fluctuate sufficiently within the time

intervals shorter than the time constant of a given room so

that the room seldom reaches the steady state. Thus the

transient response of the room to transient sounds of this

general type is an especially important physical problem of

room acoustics. The task of describing mathematically the

response of a room to an arbitrary transient, and of studying

the roles of room geometry and distribution of absorbing

materials in this response is extremely complicated (Morse,

1968). The Monte Carlo technique developed in the preceding

chapter appears to be well-suited for this purpose, the object

of this chapter is to demonstrate this with the help of a

simple physical model.

An important aspect of architectural

acoustics is to get a clearer picture of the relation between

the reflection patterns and the subjective quality. The proper

control of the distribution of sound energy throught a room

and of the growth and decay of the transient sounds are the

prime objectives of good acoustical design. Any attempt to

this end on quantitative basis calls for a systematic

interpretation of the reflection patterns by the hearing

mechanisms. It is anticipated that the proposed Monte Carlo

technique will prove very helpful here by providing the

quantitative prediction of the reflection patterns.
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The specific physical model that is

considered for the application of the Monte Carlo technique

consists of a nonconducting, isotropic, homogeneous medium

enclosed by rectangular walls. The essential dimensions of

the room are :

length 110 ft. , width 66 ft., height 1k ft.

Calculations are presented for a pressure field caused by

an actuating point source characterized by a single cycle

double rectangular pulse, sinusoidal pulse, and N-shape

pulse as shown in Fig. 11; the mathematical representation

of the source in each of these three cases being given by

Double Rectangular Pulse

Q(t) = (L/7L) [1 - H(t)J .

sin 2(2n-1)7c t/Tp }/(2n-l) ( 1 )

n=l

Sinusoidal Pulse

Q(t) H - (t)] sin L2'T t/T 1 1 2
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N-shape Pulse

Q(t) = (2/ ) [1 - H(t)] sin [2n7Lt/T 3 /n ( 3 )

n-1

where H(t) is the unit step function defined as

0 , t<T
H(t) P

1 , t > T
p

T --0.2 secs., is the source time period.
p

The results are grouped in seven different

cases for material absorption coefficient ranging from zero

to one hundred percent on different walls, with as many as

six different receiving points dispersed in the region.

GEOMETRICAL SPECIFICATION

The selected Cartesian coordinate system

(X1, X2, X3) is shown in Fig. 12. To facilitate further

discussion, each wall is designated by a symbol WLn(nkl to 6),

and is shown in Fig. 12 along with an equation of its

defining coordinate plane. The number of receiving points

chosen for the evaluation of the acoustical field is six;

the individual locations of these receiving points with their

specific symbolic designations : D, E, F, G, H, I are shown
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in Fig. 12, also seen there is the position of the point

source.

MATERIAL SPECIFICATION

In order to study the effect of the variati-

ons in the material properties of the bounding walls on the

field, the material absorption coefficient was varied from

zero to one hundred percent on different walls. The results

are grouped into the following seven different cases:

Case 1 All walls perfectly reflecting

Case 2 The wall represented by Xl= 0 , i.e. WL1, is

100 % absorptive; and all other walls perfectly

reflecting

Case 3 The wall represented by X3=44', i.e. WL6, is

100 % absorptive; and all other walls perfectly

reflecting

Case The wall represented by X3= 0 , i.e. WL3, is

10 % absorptive; and all other walls perfectly

reflecting

Case 5 The wall represented by Xl= 110', i.e. W14, is

20 % absorptive; and all other walls perfectly

reflecting

Case 6 The wall represented by X2= 66', i.e. WL5, is

40 % absorptive; and all other walls perfectly

reflecting
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Case 7 The wall represented by X2=0, i.e. WL2, is

60 % absorptive; and all other walls perfectly

reflecting.

GENERAL DESCRIPTION OF THE MONTE CARLO RESULTS

The supporting medium was considered to be

air with a mass density Y equal to 0.002378 slugs/ft3 , and

a velocity of sound c equal to 1100 ft/sec. Taking the space-

time volume (i.e. AV At) of the test cell to be 0.4259

ft 3 -sec., in each of the above mentioned seven cases, at an

individual receiving point, ten blocks of data were collected

including a total of 50000 selected signal pulses. The results

from these Monte Carlo calculations are presented in the form

of the overall mean values with plus and minus one standard

deviation in Appendix -4.

In order to study the variations in the

pressure values, as a function of the spatial location in

the region and the material properties of the bounding

surfaces, it was found more convenient to regroup the above

results and present only the overall mean values as shown

in the following figures:

Double Rectangular Pulse Figures 13, 14, and 15

Sinusoidal Pulse Figures 16 to 28
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N-shape Pulse Figures 29 to 41..

For these calculations the transition period length of 0.4

seconds, twice the pulse duration, was considered.

The nature of the diffused field can be

studied by observing the variations in the pressure values

for a longer duration of time at any one receiving point

in the region. This is accomplished by accumulating the

pressure values at the receiving point E, the one that is

in the vicinity of the centre of the rectangular room, for

a duration of 0.8 seconds, four times the pulse duration.

These results are shown in the following figures :

Double Rectangular Pulse Figure.42

Sinusoidal Pulse Figures 43 to 49

N-shape Pulse Figure 5Q0.

For a case with perfect reflecting walls,

i.e. for Case 1, it is possible to make an estimate of the

adiabatic pressure rise in the room. The nondimensional

pressure values, obtained for the three different source

configurations under investigation by the use of Eqs. 9, 10,

and 11 of Chapter 4 are

Double Rectangular Pulse 2.80387 E -6

Sinusoidal Pulse 1.785 E -6

N-shape Pulse 1.669 E -6

These levels are marked in Figures 13, 16, 29, 42, 43, and 50.
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Some noticeable aspects of these pressure

time histories are discussed in the following sections with

a note on the problems that are encountered in specifying

the proper boundary conditions for the problem.

PROBlEMS ENCOUNTERED IN BOUNDARY CONDITION

SPEC IFICATION

A survey of the existing room acoustic

theory indicates that a customary procedure is to describe

the pressure field in an enclosure in terms of normal modes

(Morse, 1944), and to consider the pressure at a receiving

point to be the summation of the contributions from each

excited normal mode of vibration. In such an analysis, based

on the concept of 'frequency space', the large number of the

excited modes are subdivided into a number of subgroups

having common properties. As shown by Hunt (1939) the

complete decay equation, when assembled, contains one decay

term for each subgroup and each term contains the number of

modes of vibration, weighting factor, and an exponential

decay factor. The expressions in the frequency domain are,

by themselves, fairly useful, for example, in the case when

the data about the incoming wave is available, and the

spectrum of the system response is to be calculated. However,

recently there is an increasing interest in obtaining the

solution in the time domain; one common example that can be
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cited is the study of the loudness of an acoustical signal

from a dual point of view, both subjective and structural.

From the subjective point of view it is the earlier part of

the time history of the response signal, inclusive of the

details of the rise time, that receives the highly favourable

weighting; whilst it is the overall response that is of

importance from the structural point of view.

Transitional Characteristics

The hitherto common technique of obtaining

the transitional characteristics of an enclosure is the

application of the methods of operational calculus, as

explained by Morse (1944). It assumes the knowledge of the

steady state response of the system to an input of, say,

unit amplitude. In brief, it consists of evaluating the

response of the system to either a delta excitation or a

unit step excitation using the Fourier and the Laplace

transforms.

Let X(t9) e t be the steady state

response of the system to an input of unit amplitude e - i  t

then its response Xs (t) to a delta excitation

(t) = (1/2) e d ( 4 )

is given by



r -iut

x (t) = (12) x( e di ( )
f

-CO

and to a unit impulse excitation

CO

H(t) = (-1/2[ io) e t d ( 6 )

is given by

CO

X(t) = (-1/27 itL) x( ) e-i  t d. ( 7 )

CO

Substitution of

s = - i

& X(s) = X(is)= X(~) ( 8 )

in Eqs. 5, and 7 above gives

X (t) X(s)

XH(t) i7'1X(s)/S ( 9 )
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Thus the method essentially reduces to the following three

steps :

I. Formulating X(s) from X(G-9), using Eq. 8

-1 -1
II. Finding either ' X(s)l or X(s)/s

III. Using appropriate convolution relationship to

find the response to a given function f(t).

Even with availability of an extensive

collection of formulae to obtain i X(s)l from X(s),

such as that edited by Erdelyi (1954), the applicability of

this method is limited to a class of problems where the

forcing function f(t) is expressible in a suitable analytical

form. In this regard the proposed Monte Carlo technique is

more general, being able to handle any arbitrary forcing

function, since in this method no transforms are involved,

the complete evaluation is in the time domain itself.
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Absorption Coefficient & Acoustic ImDedence

Incident Reflected

eAbsorbed2
\/

Transmitted

Fig. 51. Sound Incident on a Layer of Material

When sound impinges on a layer of material,

part of its incident energy is reflected while the remainder

penetrates the material and is either absorbed or transmitted.

The amount reflected from the porous material is usually

small, there the absorption may be large depending on the

thickness. On the other hand from a solid surface such as a

plastered tile, 95 % or more of the sound is reflected and

very little is absorbed; any.transmitted sound for this

case would be entirely due to the vibrations of the surface
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generated by the incident wave. Taking the intensity of the

transmitted sound to be negligibly small it can be shown

that the absorption coefficient a can be expressed as

a r 1 - r 2  ( 10)

where r is the complex reflection coefficient defined as

r-pr/pi (z cos - c)/(z cose +c) ( 11 )

z is the specific acoustic impedence at the point, and

is expressed as

z=p/u = (pi + Pr)/(ui + Ur) (12)

Ui & ur are the particle velocities in the direction

of the reflecting surface due to the incoming &

reflected waves resp.

Sis the angle of incidence.

In general, the specific acoustic impedance z, given by

Eq. 12, is a complex quantity, its real part giving the

component of the normal particle velocity at the surface

which is in phase with pressure. In the results reported in

this work the reflection coefficient was considered to be

real. In the Monte Carlo technioue account can be taken of

both" the resistive and reactive components of r, by tracing

the ray that is being followed inside the solid surface, at
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the incident point, before it gets reflected off the solid

surface. This does not present any major difficulty, and the

procedure outlined in the preceding chapter can be modified

suitably.

When working in the time domain instead of

the frequency domain the main difficulty would be in correctly

specifing the boundary conditions. As stated earlier since

the rooma acoustic theory based on the Normal Mode approach

is in the frequency domain, the material specification is

available as a function of frequency. For example, a fair

approximation to the impedance of rigidly backed commercial

sound absorbents is given by

z-_ g - i cot (Gd/o) ( 13 )

where g is a constant independent of frequency

d is the lining thickness.

A deeper study aided by experimental verifications would be

essential in transforming such a boundary condition to the

time domain for its eventual use in the Monte Carlo technique.
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DISCUSSION OF THE RESULTS

Every room, except those enclosed by

totally absorptive boundaries, is a resonant chamber capable

of being excited into resonant vibration of one or many of

triply-infinite series of frequencies, these frequencies

being determined by the dimensions of the room and the

velocity of sound. For a rectangular room these are given by

the well-known Rayleigh formula

E _ (c/2) (m /L j

where m.'s are any non-negative integers (Chapter 6)

J,L 's are the dimensions of the room (Fig. 12)

( J=l1, 2, 3)

In a rectangular room shown in Fig. 12, for which the calcul-

ations are presented, the resonant or normal modes of

vibration have frequency values shown in column 5 of Table I,

calculated based on the value of c as 1100 ft/sec. Columns 2,

3, and 4 of Table I give the Xl, X2, and X3 order numbers of

the normal modes. It is seen that there are 63 such normal

modes with frequencies lower than 50 cycles, and several

hundred modes with higher frequencies. Whenever sound is

produced in such a room, at least one, and usually many, of
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Table I. Normal Mode Frequencies

S1. Resonance Impressed Freq. cps

No. Freqo cps Double Sinusoidal N-shapeFreq. cps Rect.

1 1 0 0 5.ooo 5.000ooo 5.ooo 5.00ooo
2 0 1 0 8.333

3 1 1 0 9.718

4. 2 0 0 10.000 10.000

5 0 0 1 12.500
6 2 1 0 13.017

7 1 0 1 13.463
8 3 0 0 15. 000 15.000 15.000
9 0 1 1 15.023

10 1 1 1 15.833

11 2 0 1 16.008
12 0 2 0 16.667
13 3 1 0 17.159

14 1 2 0 17.400

15 2 1 1 18.047

16 2 2 0 19.437

17 3 0 1 19.521

18 0 2 1 20.833 20.000

19 3 1 1 21.230
20 1 2 1 21.425

21 3 2 0 22.423

22 2 2 1 23.108

23 0 0 2 25.000 25.000 25.oo000

24 0 3 0 25.000
25 1 0 2 25.495

26 1 3 0 25.495
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Table I (continued)

S1. Resonance Impressed Freq. cps
No. m m2 m3 Freq. cps Double Sinusoidal N-shapeRect.

27 3 2 1 25.672
28 0 1 2 26.353
29 1 1 2 26.823

30 2 0 2 26.926

31 2 3 0 26.926

32 0 3 1 27.951

33 2 1 2 28.186

34 1 3 1 28.395

35 3 0 2 29.155
36 3 3 0 29.686

37 2 3 1 29.686
38 0 2 2 30.047 30.000
39 3 1 2 30.323
40 1 2 2 30.460
41 2 2 2 31.667
42 3 3 1 31.722
43 3 2 2 33.583
44 0 3 2 35-.356 35.000 35-.000
45 1 3 2 35.708
46 2 3 2 36.743
47 o o 3 37.501

48 1 0 3 37.832
49 3 3 2 38.406
50 0 I 3 38.415



122

Table I (continued)

S1. Resonance Impressed Freq. ops

No. 3 Freq. ps Double Sinusoidal N-shape
No. l m2m3 req.cpsRect.

51 1 1 3 38.739
52 2 0 3 38.811
53 2 1 3 39.696
54 3 0 3 40.389 40.000
55 0 2 3 41.038

56 3 1 3 41.240
57 1 2 3 41.341

58 2 2 3 42.238
59 3 2 3 43.693
60 0 3 3 45.070 45.000 45.-000
61 1 3 3 45.347
62 2 3 3 46.166
63 3 3 3 47.501
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these resonant vibrations are excited. The resulting sound

pattern in the room is a composite of the sound radiated

directly by the source and the resonant vibrations excited by

the source of sound.

Reference to Fig. 11 and Eqs. 1 to 3 above

indicates that the source configurations that are under

consideration are characterized by specific frequency values

shown in Columns 6 to 8 of Table I. Since the sinusoidal

pulse is a 'pure tone' one it has a single frequency, although

this frequency is the fundamental frequency, the double

rectangular as well as the N-shape pulse have additional

higher harmonic 'over tones'. In a:specific case chosen(Fig. 11)

the fundamental frequency of the source coincides with the

normal mode of Sl. No. 1, and as a result this particular

normal mode is strongly excited making the room to 'sing' or

resonate at this frequency. This is true for all the three

configurations of the source (Fig. 11). In case of the double

rectangular shape pulse Sl. No. 8, 23, 44, 60, etc. and in

the case of the N-shape pulse S1. No. 4, 8, 18, 23, 38, 44,

54, 60, etc. are the additional normal modes that would be

excited strongly in this room.

Depending upon the type of the standing

waves they represent the modes are classified as the axial,

tangential and oblique. It could be expected from the

existing room acoustic theory that the earlier part of the
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pressure time history would be dominated by the axial modes.

With the passage of time, the tangential and axial modes

would be generated to a substantial extent, and the field

could.obe more.& more diffused. The transitional period

representing the pressure build-up extends from the instant

the source is initiated to the commencement of the steady

state. During the build-up stage the motion is quite complic-

ated by the continuous shift that takes place from the

natural frequencies of the standing waves to the forcing

frequency of the source. In the investigation of the responce

of a rectangular room to a sonic boom signal in the time

domain, Vaidya (1969) has found that the earlier part of the

time history resulting from the build-up of the modes is

typically of the form as shown in Fig. 52, where the ordinate

is proportional to the pressure value. The Monte Carlo

results (Fig. 13 to 50) are seen to be in confirmity with

this.

When the sound from a source in an enclosed

space is suddenly stopped, it is wellknown that the sound

appears to die away slowly rather than immediately. When the

driving ceases, due to the energy stored up in the system,

oscillations persist and again there is a transitional period,

known as the decay period, in which the motion is complicated

by the shift from the forced frequency, the frequency at

which the system was vibrating during the steady state, to
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the natural frequencies of the standing waves.

In cases where the two or more eigentones

have their natural frequencies closer than the average

spacing the corresponding standing waves may be excited

strongly. The interference and the beating effects between

the nearest modes of vibration explain the peaks or irregula-

rities exhibited in the pressure time histories of Figs. 13

to 50 and Fig. 52. After the source cut-off the total sound

energy in the room will not fluctuate, but at any given

point in the room, the pressure will fluctuate because of the

interference between the normal vibrations; particularly in

the case of excitation by only a few frequencies the fluctua-

tions produced by such interference may be important. To

describe the observed irregularities in sound decay curves

Watson (1946 ) uses the term 'modulation' defined as the

deviations of the sound decay curves from a simple exponential

decay irrespective of the cause or the nature of the deviations.

The theory and experiment (Beranek 1971, Knudsen 1967, Watson

1946, Jones 1940) indicate the following three primary reasons

in the modulation of the sound decay curves

1. The presence of beats produced by the interference

among the resonance frequencies of the room

2. The occurence of multiple decay rates resulting

from the shape of the room or the nonuniform
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distribution of absorption on the walls

3. The abrupt changes in the pressure due to the

passage of the terminations of the wavetrains

from the source.

An alternative approach to visualize the

situation that prevails during the transitional period is to

attempt to 'follow' the sound waves around the room as they

are reflected back and forth from the walls (Bolt 1950). In

essence this method consists of replacing the effect of the

boundaries of the room by an infinite array of image sources -

(Fig. 6), each image corresponding to one of the multiple

reflections of the original wave emitted by the source.

Using this approach of multiple reflections in conjunction

with the Laplace Transform technique Mintzer (1950) has

presented a method for the description of a transient pressure

field in a rectangular room. Figure 53 presents his results
showing the variation of the pressure at the receiving point

(33',33',22') in a room (Fig. 12) due to a point source of

double rectangular pulse shape(Fig. llb) when all the walls

are perfectly reflecting. The corresponding pressure curves

obtained by the application of the Monte Carlo technique are

seen in Fig. 13. Monte Carlo results are seen to be in

qualitative agreement with the Mintzer's results but their

quantitative comparison cannot be offered because the
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normalization factor used in the Mintzer's results is not

available.

Consider, for example, Fig. 13.1. It shows

the. mean pressure values, with plus and minus one standard

deviation, obtained from the Monte Carlo application, at the

receiving point D, for Case 1, when the source is of the

double rectangular shape (Fig. lla). The mean pressure curve

of Fig. 13.1 is one of the constituent curves shown in

Figs. 13 and 15. The initial build-up of the pressure that is

observed (Fig. 13.1) is the result of the multiple reflections

of the pressure waves that appear in the lossless medium. It

is also noticed that in the latter portion of the observation

period the rate of the pressure build-up is not that high as

it was in the first half; this is because the effect of the

pressure wave reflections from the negative half of the

source cycle, now, partly balances the continued build-up

from the positive half. After the source cut-off at 0.2 secs.

the pressure is seen to fluctuate at a frequency that is not

very much different from the forced frequency, coincident

with the strongly excited normal mode of S1. No. 1 (Table I),

but around the mean pressure value of 2.8 E -6, which is

the level of the expected adiabatic pressure rise referred

to earlier and marked in Fig. 13.
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In the Mintzer's method each reflection at

the boundary wall is described by means of a unit function

with a suitable retarded time argument and results in a

series of integrals in a transformed space. The terms of the

series are in the form of plane wave expansions around the

image source points. At a given time the series is seen to

possess a finite number of nonzero terms. It is obvious that

the Mintzer's method can be applied to cases where the images

can be found analytically. It is in very few special cases

will the images be the 'mirror images'. Even in these

special cases the calculations are quite involved requiring

to be able to obtain the transforms; subsequently the

integrals are approximated by the method of the steepest

descent. In contrast the calculations in the Monte Carlo

method are very simple.

Consider Fig. 13 again. Until the source

cut-off, which occurs at 0.2 secs., the pressure values at

all the six receiving points D, E, F, G, H, & I are on

increase, although at different rates, but later, more

specifically during the interval 0.20 to 0.32 secs., the

pressure values are seen to be above the expected adiabatic

pressure line for the receiving points D, E, & F whilst

below that line for the receiving points G, H, & I. This

behaviour can be explained on the basis of the following
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physical reasoning. The decay at a point that results after

the source cut-off consists of a series of discrete changes

in the pressure level resulting from the passage of the

termination of the wavetrains from the source and its first

few reflections. The drop due to the passage of the wavetrain

termination from the source is probably the most important,

since the wavetrains from the images have various phases

and amplitudes and hence do not necessarily recombine to

give the same abrupt change at the receiving point. For the

case shown in Fig. 13, viz. Case 1, there is no absorption at

the walls. In such a case since the various wave trains set

up a well-defined standing wave system it is possible that

the passage of the termination of the wavetrain from the

source may change the pressure at the receiving point from a

node in the standing wave system to a loop. Thus the pressure

at the receiving point may rise by a discrete amount at the

beginning of the decay; or in a similar manner, may fall by

a discrete amount if a loop is changed into a node at the

receiving point.

Another point that can be noticed from

Fig. 13 is that the first local peak on the pressure curve

occurs at the receiving point F at 0.04 secs. and not at the

receiving point D which is nearer to the source (Fig. 12).

This is to be expected because the receiving point F is in

the vicinity of one of the corners of the enclosure and as a
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consequence it receives the contribution from the reflected

pressure wave much earlier than any other receiving point.

This statement is substantiated by another observation that

the first pressure peak, seen on the curve for the receiving

point F in Fig. 13 is absent from the corresponding curve in

Fig. 14. It is recalled that Fig. 14 is for the Case 2 where

the side wall WL1 (Fig. 12) of the enclosure is 100 % absorp-

tive and as such there can be no reflected wave from this

wall.

In Fig. 14, at any receiving point, the

pressure does not build up to as high a value as it does in

the perfectly reflecting case (Fig. 13). In Fig. 14 the

pressure soon drops to zero. The pressure value in Fig. 14

is seen to be very nearly same at all the six receiving points

D, E, F, G, H & I around 0.36 secs. Such a phenomenon is

noticeable in Fig. 13 also.

Figure 15 shows the effect of variations in

the bounding wall material properties on the pressure time

history at the receiving point D when the source is of the

double rectangular pulse shape. At any given time the highest

pressure level is marked, as to be expected, by the pressure

curve corresponding to Case 1, all walls perfectly reflecting;

this particular curve is seen to be an enveloping curve
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of the pressure values as a function of time that can possibly

be attained in this chamber at the receiving point D for the

particular source configuration (Fig. lla) that is under

investigation.

Consider, now, from Fig. 15 the individual

pressure curves corresponding to Case 1, Case 2 and Case 3.

In Case 1 all walls are perfectly reflecting, here the

reverberant field generated from the initial portion of the

positive half of the source cycle builds up to mask completely

the wave field generated from the remaining portion of the

positive half of the source cycle, the negative half of the

source cycle and the source termination. In Case 2 the side

wall WL1 is considered 100 % absorptive, and in Case 3 the

ceiling i. e. wall WL6 is 100 % absorptive, while the other

walls are perfectly reflecting. Some of the effects of sound

absorbent materials is shown by these three curves. In Case 2

the pressure does not build up, as pointed out earlier, to as

high a value as it does in the perfectly reflecting case

(Case 1), while in Case 3, where the area of the absorbent

material is still larger, the maximum value of the pressure

is even less. In the curve corresponding to this Case 3 the

pressure soon drops to zero point and then goes to negative,

thereby showing that the wall reflections due to the first

half of the source cycle are not sufficient enough to mask

totally the latter part of the wave that comes from the



negative half of the source cycle. A look at Figs. 16, 23,

29 and 36 reveals that this is true, as to be expected, when

the source configuration is of single cycle sinusoidal or

N-shape pulse.

Figures 16 to 22 show, for Case 1 to Case 7

respectively, the composite pictures of the pressure variations

at the six receiving points D, E, F, G, H & I when the source

is a point source with single cycle sinusoidal pulse configu-

ration. The value of the expected adiabatic pressure rise

shown in Fig. 16 for the sinusoidal pulse is 2/7T times that

was found (Fig. 13) for the double rectangular pulse. A very

striking indication from the Monte Carlo results of Figs. 16

to 22, common to all of these, is that after the source

cut-off at 0.20 secs. the time interval between, say, 0.22

to 0.34 secs. roughly corresponds to half cycle length of

the pressure vibrations that prevail in the region under

investigation. This is in confirmity with the earlier

observation that when the source is of sinusoidal configuration

as shown in Fig. llb, the pure tone source, in principle

although a large number of vibrational modes are excited, it

is the mode with Sl. No. 1 of Table I that becomes predominant,

its frequency being coincident with the source frequency of

5 cycles.
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A comparison of any particular curve from

Fig. 16 or 17 with the corresponding curve from Fig. 13 or

14 indicates tht the number of local pressure peaks, referred

to above as 'modulations', is larger and at the same time

much more pronounced for the double rectangular case than

for the sinusoidal case, the reason being the rectangular

pulse has, in addition to its fundamental frequency of 5

cycles, higher harmonics of frequencies (Table I) 15, 25,

35, 45, etc. and the normal modes that are in the vicinity

of these overtones are also excited strongly. This can be

seen more clearly from Figs. 13.1, 14.1, 16.1 & 17.1 which

indicate separately the constituent curves for the receiving

point D of Figs 13, 14, 16 & 17 respectively. The more

absorbent area in Case 3 makes the pressure values more

negative in Fig. 18 than in Fig. 17.

Figures 23 to 28 indicate, for the receiving

points D, E, F, G, H & I respectively, the effect of variations

in the bounding wall material properties when the source is

a point source with a single cycle sinusoidal pulse configu-

ration. The curve corresponding to Case 1, all walls perfectly

reflecting, forms the enveloping curve representing the limit

pressure values. The lowermost curve is for the Case 3 where

the absorbent surface is large.
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A comparison of Figures 29.1 & 30.1, which

show the constituent curves of Figsi 29 & 30 separately for

the receiving point D, with Figs. 13.1 & 14.1 indicates that

the number of modulations referred to earlier is larger when

the source configuration is of N-shape than when it is of

the double rectangular shape; this being due to the fact that

as shown in Table I, the N-shape configuration has additional

number of higher harmonics with the frequencies in the

neighbourhood of some additional groups of normal modes.

Expressing the transient pressure response

curves, obtained from these Monte Carlo calculations, as

the Fourier series with the same fundamental frequency as

that of the input and utilizing the approach presented

by Walters (1950) that makes use of the matrix method for

numerical evaluation of the coefficients it is possible to

find the transfer functions for the system. This approach

of Walters is specifically aimed at the expansion of a

finite part of the nonperiodic function into Fourier series.

In the present study such an evaluation of the transfer

functions for the system was not undertaken but the experi-

mental results, reproduced in Fig. 54, that were reported

originally by Bhatt (1939) seem to have a bearing on this

subject.
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The linear dimensions of the room shown in

Fig. 12 and that for the results of Fig. 54 are in the ratio

2.5 : 1.5 : I and 2.56 : 1.7 : 1 respectively; whilst their

maximum dimensions are in the ratio 26.9 : 1. A comparison

of the mode designation integers on the resonance peaks of

Fig. 54 with those in Table I shows that the order of

occurrence of the normal modes is very nearly the same in

both these cases, but for the use with the room shown in

Fig. 12 the frequency scale in Fig. 54 needs to be multiplied

by a factor 1/26.9. Thus for example, the first mode 1,0,0

then occurs at the frequency 130/26.9= 5.018 which is in

agreement with the value shown in Table I.

Figure 54 shows that the effect of placing

the absorption material on the floor, corresponding to Case 3

in the present study, is the drop in intensity of the first

five peaks, all these with m = 0, and the merger of the
3-

higher frequency .peaks in a uniform response. The effect of

placing the absorption material on the side wall, correspond-

ing to Case 2 in the present study, is to merge the higher

modes as before, but the loss of intensity is not as much as

in the previous case due to a smaller absorption area. The

wave corresponding to the normal mode 0,0,1 is normally

incident on the floor and grazes the side wall. Thus when the

material is on the side wall its absorption is small but is

quite high when the material is on the floor, this is the
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reason pointed out by Bhatt for the absence of the peak

corresponding to the O,0,1 mode from the solid line curve of

Fig. 54.

According to Strutt (1929) in acoustics

the room can be classified as a 'large room' only when the

condition existing in a given room is such that the first

free frequency of oscillation is very small with respect to

the forced frequency. This clearly shows that even with the

large dimensions (Fig. 12), the room that is considered

here carmnot be labelled as a 'large room'. The Monte Carlo

calculations are not restricted to any particular class of

room, large or small.

The four walls WL1, NL2, WL3 & WL4 (Fig. 12)

forming the two corners with the receiving points F & I are

perfectly reflecting in Case 1 & Case 6; thus in these cases

at the points on these walls, or in particular roughly in the

vicinity of the receiving points F & I there are the velocity

nodes which are equivalent to the pressure extremals. This is

the reason why for the most part of the observational period

in Figs. 13, 16, 21, 29 and 34 the pressure curves correspon-

ding to the receiving points F & I form the enveloping curves

indicating either the maximum or the minimum pressure values.

The effect of varying the wall material

properties for the N-shape source configuration is seen in

Figs. 36 to 41 at the receiving points D, E, F, G, H & I resp.
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As is expected, for most part of the observation period, the

uppermost curve is that corresponding to Case 1 where all the

walls are perfectly reflecting; whilst the lowermost curve is

the one that corresponds to Case 3 where the area of absorption

is maximum.

The modulations of the decay curve and the

beat notes that result after the source cut-off are seen more

clearly in Figs. 42 to 50; these are the pressure curves for

an extended time period of 0.8 secs., four times the source

time period T , at the receiving point E which is in theP

vicinity of the geometrical centre of the rectangular room.

All of the odd modes of vibrations have the pressure nodes

at the centre of the room and hence will not contribute to

the pressure value there. Figures 42, 43 & 50 are for the

Case 1 where all the walls are perfectly reflecting and

there is no loss in the medium. As time advances more and

more reflections arrive at the receiving point making the

sound field directionally and spatially diffuse. Piling up

of energy takes place at a set of frequency values close to

which there are number of normal modes. Indicated in these

figures are the exoected adiabatic pressure values in each

case of the source configuration. Considerable absorption

that is present in Case 2, Case 3 and Case 7, for example,

is the cause for the drop in the pressure intensity that is

seen in Figs. 44, 45 & 49. The nature of these figures can be
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explained on the basis of the interaction of two adjacent

modes with the help of the experimental observations first

reported by Knudsen (1967) and reproduced in Fig. 55.

In a rectangular room of dimensions

30' x 19' x 24' by making oscillograms of two separate modes

0,2,0 (37.439 cps) and 1,0,1 (37.662 cps), and then taking

account of the changing phase differences and the different

rates of decay Knudsen has verified that the intermediate

curves in the top set of seven curves in Fig. 55 are some

typical decays resulting from the interaction of these two

adjacent modes.

In the bottom three curves of Fig. 55 the

upper and lower records show the decay curves obtained by

Knudsen for the two modes 0 ,4,0 (75.16 cps) and 2,0,2 (75.70

cps) whilst the middle record is the interaction of these

two modes obtained by exciting the room.at the intermediate

frequency of 75.54 cps.; here the beat frequency corresponds

precisely to the difference between 75.16 & 75.70 cps. A

reference to Table I and the decay curves, for example Figs.

42, 43, 50, etc., shows that the Monte Carlo calculations

are in general agreement with these observations of Knudsen.

The above discussion establishes the

qualitative agreement of the Monte Carlo results with the

other known results; in the following chapter is presented a
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quantitative comparison using an analytical solution based

on the Normal Mode method.



Chapter 6

PRESSURE FIELD INSIDE A RECTANGULAR ROOM

NORMAL MODE SOLUTION

The problem that is considered here is the

investigation of the sound field inside a region bounded by

rectangular walls using the normal mode point of view. In

practical applications the walls of any enclosure possess

certain amount of elasticity and heat conductivity. Inclusion

of the finite elasticity and heat conductivity considerably

complicates the solution of the problem. In order to visualize

the situation more clearly, the side walls of the room are

considered to be absolutely rigid, and non-heat conducting.

The supporting medium inside the room is assumed to be

homogeneous, and at rest initially.

It is customary to describe the pressure

field inside the rooms in terms of the normal modes, conside-

ring the medium enclosed to be a three dimensional elastic

body having its own natural modes of vibration, governed by

144



the mechanical constant of the mass of the medium, and the

boundary conditions on the enclosing surface. In other words,

this is to consider the enclosed medium as an assemblage of

resonators, standing waves that can be set into motion by

the source, and that will die exponentially when the source

is stopped.

In this method the sound field inside a

rectangular room is expressed as a sum of triply infinite

set of eigenfunctions; depending upon the type of the

standing waves they represent, the modes are classified as

the axial, tangential, and oblique. It could be expected

from the existing room acoustic theory that the earlier part

of the response field, characterized by the pressure time

history, would be dominated by the axial modes; with the

passage of time, the tangential and the axial modes would be

generated to a substantial extent, and as a result the field

would be more and more diffused.

GOVERNING EQUATION

Consider a pressure field caused by a simple

point source, radiating from a given source position x in
~S

the region under investigation. It is governed by a nonhomo-

geneous wave equation of the type
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[(1/c 2 ).( 2 /at 2 ) -2 p(x t) = ).(-) ( 1

where c is the characteristic wave speed

p(xr,t) is the fluctuating acoustical pressure at.a

given receiving point x at time t

is the mass density of the medium

Q(t) is the strength of the source, measured as the

volume of fluid introduced by the source per unit

time.

Consider, now, the point source characterized

by a single cycle sinusoidal pulse(Fig. 11). Its mathematical

representation is rewritten, using Eq. 2 of Chapter 5, as

Q(t). (x-x s ) _ sin (27tE / T ).-(x r - Xs) 1 I- H(t)

iQo(xs. e-0 ' t [1 H(t)J (2

where kQ. represents the real part of the quantity involved

Qo(x s ) = -i ( 3 )

LS is the circular frequency of the source, given by

L- 2C/ T ( 4

T is the source time period
pt) is the unit step function defined as

H1(t) is the unit step function defined as
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0 , t < T
pH(t) P

1 , t > T
p

Since the walls are considered to be rigid, the pressure

field satisfies the boundary condition

(D /Dn) p(xr,t) = 0 on the boundary ( 6)

where n is a direction normal to the boundary surface.

The source is started at t= 0, and prior to that the quiescent

condition exists; hence the initial conditions that need to

be satisfied by the pressure field are the following two

p(x r , 0) = 0

(/t)p(x r ,o 0) = 0

NORMAL MODE REPRESENTATION

The pressure field inside the region is,

now, assumed to be expressible in terms of the normal modes

of vibration of the system as

P(xrjt) ICM(t) T T M(xr ) (8)

M

where oC M is the coefficient to be determined

M is the orthonormal eigenfunction that satisfies

the homogeneous Helmholtz equation



lt 2 is the corresponding eigenvalue- for the Mth mode
M

of vibration; since no energy is absorbed either

in the medium, or at the walls, all ,L's are real

M (ml,m2 ,m3 ) is an Integer Triad.

It is seen that Eq. 6 is satisfied only when

( 2 / n) It - 0 on the boundary ( 10 )

Selecting the Gartesian coordinate system as shown in Fig. 12,

and denoting the length, width, and height of the room by

L1, L2, and L3 resp., the eigenfunctions satisfying Eqs. 8

and 9 are expressed as

M(x) = cos(Dl.Xl) . cos(D2.X2) . cos(D3.X3)

with M D12 tD22  D32

where DJ = m. / Lj

x (Xl, X2, x3) ( )

GREEN'S FUNCTION EXPRESSION

For the region bounded by the rectangular

walls use can be made of the Green's function expression

given by Morse (1961), which when expressed in the present
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notation takes the following form

G(k r s ) = AM /M 2  ( 12)
M

where -9 c =R/ , qy 2  -At2j (13)

AM(xr) Ms(x) / ( 14 )

N 4M is the normalizing factor, defined as

NM M'' (x 'N(x) N dXl dX2 dX3 MN

V

S (Ll L2 L3) . ( E E )
ml m2  m3

- V . M( If )
.15

1 , for j 0

JL , for J 0

V is the volume of the enclosure.
-i aMct

Let BM  (1/2 kM) . e / ( M - LY/ c)

K M at
+ e I / ( k+L/ c)

-cos ( M ct) - i (L9/ c kM) sin ( RM ct) / /M 2

(16 )
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Then the pressure field in the nondimensional form, for the

interval 0 t T, can be expressed as

P (xrt) = (xs)/c 2 R G(kxr: s e t t AM BM

M

=(1/c 2) AM sin(L-90/(k.2 X62)

M

+ (k/kM) sin(AMct)/ALM2 ( 17 )

Differentiation of this expression partially with respect

to t gives

-x 2 2 1 -21
( lt) p ('ro) (/c2) A / M2  - ( /) 2

M N (18)

Since M = (ml,m2 , m ) is an Integer Triad, the summation

over M is in fact a triple summation

.... co co co

cc, o C o -o
(19

M n 0 m2 0 m 3 0

For a given source frequency, the wave number kis a constant

but the eigenvalue AM (Eq. 11) increases as the integer

components ml, m2 , m take higher and higher values, and as

a consequence, with the increase in the number of terms in

the summation over M
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1 At AL2 1 ;(?M)2 -- 0

This shows that the Eo., 18 satisfies the requisite initial

conditions specified in E0. 7. It is also noticed that the

pressure amplitude increases considerably as

ALMk

This case is investigated separately by the application of

l'Hospital's Rule; the resulting expression is

p(x ,t) (1/c2 sin(t)/(R2 2

M A.L~~ sin(

+ (k/IM) sin (RMCt)/ 2

(A /k 2) L,9t/2- sin( t)

(0 t <. T,)

(20 )

At t=.T the source is cut-off (Fig. 11), the subsequent
ppressure field is expressed aspressure field is expressed as

S/
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P (xrt) = (1/c2 ) AM { aM cos( 1Mct) t- b sin(Mct)l

M

(21)

where the coefficients aM and bM are determined from the

following two conditions at t= T
p

p (xrTp) *(xrT )

(/t) p (xrT p) (/t) p*(xrT p_) (22)

It is readily shown that this leads to

p (x:r t) (1/c2 ) AM  sin(9T). cosLMc(t-T ) /(k 2  2)

M

t /RM ) sin(RMct)/UM 2

+ cos(L9T p). sin[ 1Mc(t-T ) /(z2_AM2)1

(t>T)
p

(23)

Appendix 5 provides the computer

programme for these relations, with a printout of the

computed results for the pressure field at the receiving

point D (Fig. 12) (Case 1). The Normal Mode Solution results

thus obtained are shown compared with the corresponding Monte

Carlo solution results(Appendix 14 programme and the result

pri-tout) in Fig. 56.
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OBSERVATIONS

The Monte Carlo calculations of Fig. 56

consisted of ten blocks totalling 50000 selected ray pulses,

and took 211 seconds of core time (Appendix 4) on the CDC 6400

computer at the University of Virginia's Computation Center.

The normal mode solution included from (1,-0,0) upto (15,15,15)

and required 118 seconds (Appendix 5). Therefore, computation

times were comparable, although results of equivalent accuracy

would have been obtained by the normal mode method with less

modes and consequently less time.

It will be seen from Fig. 56 that the results

of the two methods are in general agreement, when it is

considered that the normal mode solution should only be

expected to be within the limits of plus and minus one standard

deviation about 68% of the time (Appendix 2). Using Eq. 15 of

Appendix 2, the probable relative error in these calculations

is expressed as

Sprob (0.68 / E(pj) . (D2 [p* / N)

where Ep }  is the expected pressure value at the

time index J

D2 is its variance

N is the sample size



For each block the sample size N was 5000. Choosing J= 64,

for example, it is seen from the printout results of Appendix

that

E ip4 2.10562361 E -06 and

2p64 J =,6.8o646248 E -13 .

Then the corresponding value of the probable relative error is

prob = 0.0038.

It is noticed that whenever the variance is large, the value

of the probable relative error gets large.



Chapter 7

MONTE CARLO APPLICATIONS TU ACOUSTICAL FIELD SOLUTIONS

INSIDE A CURVED BOUNDARY

INTRODUCTION

In order to adapt the Monte Carlo technique

that is developed in Chapter 3 to the cases of practical

importance where the Poundaries are not at right angles,

certain modifications become essential especially to cover

such eventualities as the occurrence of possible focussing

effects, the associated singularities, etc. in the region

under investigation. Such modifications and the extension

of the proposed Monte Carlo technique to cover the cases of

curved boundaries, not necessarily of simple geometric shape,

are considered in the present chapter.

The problem of quantitative description of

an acoustical field in a given region of curved boundaries,

in the presence of acoustical sources, is basically similar

to that identified earlier in Chapter 3. By specifying the

156
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physical and thermodynamical characteristics of the supporting

medium as well as the boundaries involved, and by utilizing

the notion of the multipole sound sources for the generation

of sound, a conceptual model is created to represent the

given acoustical system.

MONOPOLE FIELD BONDIMENSIONAL FORM

Consider a representative monopole situated

at a position, say, xs (Fig. 2) in an unbounded medium. Its

pressure contribution at a receiving point x r is given by

Eq. 8 of Chapter 3. When considering the effects of curved

boundaries it is more convenient to express this equation in

a nondimensional form. This is achieved by introducing a set

of new nondimensional variables defined as

R = R/a V = V'/a3  r = /a , X s x /a

ct/a, Y* * * 2
= oT= ct/a, m = m/ y, p p/c ( 1 )

where a is some characteristic length of the problem that

is under investigation; for example, when considering the

field inside a cylindrical duct, a can be conveniently

chosen to be the maximum radius of the duct. Substitution of

these variables in Eq. 8 of Chapter 3 results in an expression

for the nondimensional pressure distribution caused by the

source under investigation, and it is given by



* * * 2)2p ( r,t*) = (V '*/I43R*).( /l t. 2 ) * *x,'(xm (xs (,*)

Sq*( ) R* ( 2 )

where Q(t*)= V' "(x5 *t* W

is the quantity that represents the strength time history

of the energy source.

ENERGY SOURCE FINITE INTERVAL TIME REPRESENTATION

A typical strength time history of an

acoustical point source is shown in Fig. 57a. Its total

period of activation

T c T /a
p = cT a (3)P P

where T is the source time period in seconds, is divided
P

into a finite number of intervals

2 np= T *p /6E .11)

where A T is a width of any individual interval. In each of

these intervals the strength of the source is approximated

as constant. The use of finite number of elementary pulses

thus defined, as shown in Fig. 57b, then represents the

required approximate finite time interval representation

that is necessary for the Monte Carlo simulation.
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Now considering i as an integral index

such that

1 i 2np (5)

it is seen that a pulse corresponding to it can be defined

to be the one with
.

strength Qi

and time of origin ti = (i - ) A ( 6 )

Then with the use of Eq. 2 it can be shown that its pressure

contribution at the observation point xr  is given by

p * (tr t)) / ( 7 )

where the relation between the three variables t, * and R

can be very easily shown to be

t= ti

or in other words

ti t*-R (9)
t *

where R = xr x-

Recalling the definition given in Eq. 1 it is seen that an

equivalent dimensional form of Eq. 9 is given by

t = t -1 / c ( 0 )
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From this relation and the relation given

by Eq. 5 of Chapter 3 it can be inferred that when t* is

considered to be an instant at which the wave of pressure
*

disturbance that was originated at the source position x ,

and at time ti  arrives at the receiving point x , the time

of origin ti given by Eq. 6 and the retarded time T* defined

by Eq. 1 above and Eq. 5 of Chapter 3 are synonymous.

Since the pulse of index i produces, in the
*

immediate neighbourhood of the source position x , a pressure

disturbance in a short interval, say, ti* to (ti* - ), its

effect at any subsequent instant t*( t i *) is localized

within a very thin spherical shell with centre x and-S5

radius R( t - ti*). To be more specific, let a new variable
*

t be introduced to represent the instant at which them

disturbance wavefront that was originated at time ti and at

the source position x arrives at the receiving point r ;

then using a S-function, the pressure contribution from the

ith pulse given by Eq. 7 can be written as

S*" * )*= (Qi* / Rm ) . & (t* - tm -t ( 11 )
* R* * *

where Rm = R = Xr - s

is the distance traversed by the disturbance wave

during the interval ti to tn*
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Now suppose that a given length of the

transitional period, the period for which the solution is to

be studied, is divided into J time cells, each of duration

t*. Let pi (xr ) be the mean value of the pressure

+ + &th
Pi (xr ,t*) given by Eq. 11 taken over the 3th time interval;

then Jat*

p* I(x ) = (/t*) p*( *t) dt*

At 1

= Z[Li /R Rm
if the disturbance wavefront of the

i t h pulse passes through the receiving

point during the jth time interval

- 0 otherwise ( 12 )

When the length of the time cell A t of the transitional

period is considered to be the same as AT , the length of

any individual subinterval used in the finite time interval

representation of the energy source (Fig. 57); i.e. when

t* -Aes" ( 13)

Eq. 12 reduces to
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/R~

if the disturbance wavefront of the ith

pulse passes through the receiving

point during the jth time interval

0- otherwise ( 14 )

RAY PROPAGATION IN A BOUNDED MEDIUM

At every point in a medium the signal that

describes the pressure disturbance propagates along a

direction normal to the wavefront surface. The locus of this

wavefront normal is the requisite trajectory along which the

acoustical ray propagates. In general this is a function of

I. Initial direction of any particular ray,

emanating from the energy source

II. Spatial variations of the physical and

thermodynamical characteristics of the

fluid medium

III. Spatial variations of the geometric shape

and the thermodynamical characteristics

of the boundaries that enclose the region

under investigation.

Mathematical specification of these, as pointed out earlier,

is essential in order to make the problem of the determination



164

of the ray trajectory a determinate one; thereby enabling a

formulation of a set of equations that defines the ray

direction successively.

When the medium under investigation does

not extend to infinity but is bounded at finite distances

from the energy source, it becomes essential to redefine the

variable R, or Rm , appearing in the above formulation, as

the arcual distance, measured along the ray trajectory,
*

starting from the source position x to the receiving point

position xr*; this takes into account any reflections from

the solid boundary that might have taken place during the

progress of that particular ray.

RAY TUBE

In the region under investigation, in

general, the physical and thermodynamical variations are

present; in the course of the ray trajectory, any possible

eventualities resulting from such variations can be taken

care of more conveniently by following not only a single ray

but instead a small ray tube, consisting of a bundle of rays,

that originates from the energy source, within a given

elemental solid angle A~SL, centred around a randomly selected

ray (a, (,). Such a ray tube and its trajectory are shown

in Fig. 58. At any point along its trajectory the variables

that define such a ray tube are its spatial and directional
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coordinates along with its weight; a ray tube weight is its

intensity. Q* is the initial weight of the ray tube that

is used to characterize the randomly selected pulse with

an integral index i, given by Eq. 5.

In the present analysis it is assumed that

the influence of the selected pulse is confined within the

ray tube that is traced. Then this pulse can contribute

towards the construction of a pressure field at a given

receiving point in the region, only when such a point is

intercepted by the propagating ray tube. The pressure

amplitude determined by the ray tube there would represent

the extent of the pressure contribution from the ray at

the time of such an occurrence.

Ray Tube Divergence Factor

Figure 58 shows two receiving points Xrl

and xr2 that come under the influence of the propagating

ray tube, in the course of its trajectory, after suffering

a few collisions with the solid surface on its way.

Let s1- and s2 represent the ray tube

cross-sectional areas in the nondimensional form, normal to

the central ray ( , ,y); and let, in general, n I and n 2

be the indices of refraction of the supporting medianum at

these two points x 1 * and Xr2* respectively. Initially for

t he application of the proposed Monte Carlo technique, in
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the present work, a particular case of homogeneous medium

is considered; then

nl = n2 = constant (15)

throughout the region. In a more general case, depending on

the extent of the variations in the refractive indices from

one point to another, it would be essential to take the

proper account of the resulting scattering effects.

If pil is considered to be the pressure

contribution from this ray (o, ,Y) at the position xrl

then that at xr2 can be expressed as

Pi2 r t Pi( 1 DF12 16 )P2- 2 21 1 1

where DF12 is the ray tube divergence (or convergence)

factor defined, in general, as

DF12 [ (n, / n1).( / } ( 17 )

1 2
and 2 t1 X2 xr 1

ti + R' t R1 DF12 (1

R 1* being the arcual distance, measured along the

ray(o< , , ) trajectory from the source

position xs to the receiving point Xrl .
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Variation in Ray Tube Cross-sectional Area

It is seen from above that in order to

estimate the pressure contribution at any point in the

region it is essential to be able to follow the variations

in the ray tube cross-sectional area during its lifetime.

A number of alternate methods were investigated, the one

that requires the minimal computational efforts is outlined

below.

This method consists of simultaneous

following of three rays originating from the same source.

Out of these three, one is the random selected ray (c<,,)

whilst the other two are simply adjacent to it with very

small elemental differences in their directional coordinates

initially. At any point along the trajectory the area formed

by the triangle with vertices corresponding to points on

these three rays there now representa, -when normalized, the

required variation in the ray tube area. This variation, in

general, is a function of the local geometry and the material

characteristics of the region that is under investigation,

and so at the latter stage of the trajectory there is a

likelihood of these three rays being reflected from the

surface positions with differing characteristics. This

eventuality is reduced to a minium by holding the initial

differences in the components of the directional coordinates
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of these three rays to an absolute minimum,which in other

words amounts to having the distances between these three

rays, initially, as small as possible. As defined earlier,

when the linear dimension is normalized by the maxiimnam

boundary radius, at a distance of the order of 0.5 from

the source position, the initial ray tube area of the order

of 1.0 E -25 magnitude has been tried. The technique that

is developed for such a processing is dealt with in consider-

able detail in the following chapter.



Chapter 8

CURVED BOUNDARY PROBIEM

RAY TUBE PROCESSING

INTRODUCTION

The estimation of the pressure at a given

receiving point in the region under investigation is based

on the study of the propagation of the ray tube, starting

from a given source, in a material medium of known geometry

and physical properties. The Monte Carlo technique that is

developed for this purpose is quite general. It is explained

here with the help of a specific problem of prediction of the

transient acoustic field caused by a sound source inside a

cylindrical duct. The procedure for a more general case is

outlined in Appendix 6.

MODEL SPECIFICATION

The proposed Monte Carlo method, as pointed

out earlier, is not restricted to cases where the bounding

170
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surface is of simple geometrical shape; however, for clarity

and definiteness in the presentation of the technique that

is developed, the region that is selected for the first

application is the one that is bounded by a cylindrical duct

surface of circular cross-section, rigidly closed on the

left and terminating on the right in a perfectly absorptive

medium (Fig. 59).

A small acoustic driver, mounted at the

centre of the duct on the left bounding surface, is assumed

to give an emission corresponding to a 'point source' of

sound.

With a view of presenting a tractable

analytical solution for the same problem, thereby providing

a quantitative evaluation of the results obtained from the

application of the Monte Carlo technique, the cylindrical

surface is considered to be perfectly reflecting, and the

supporting medium is assumed to be homogeneous, being at

rest initially. The main feature of such a medium is that,

here, originating from the source, the ray tube propagation

is essentially in paths composed of straight lines from one

collision to another one with the bounding surface.
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RAY TUES VARIABLES

For any ray the starting point is the

position of the source, which is denoted in the following

formulation, for brevity, by

XS (1,2,3) = (XSl , xs2 , X33 ) ( I )

In the particular case that is under investigation here,

and shown in Fig. 59, the source position is coincident with

the origin of the coordinate system.

As explained in Appendix 6 the directional

law that is applicable in this case is the Cosine Distribution

Law DL(2). Let the unit vector in the direction of the

randomly selected ray (o, ,Y ) be denoted by

DCI(1,2,3) =(DOll, DGI2, DC13) ( 2 )

then the equation of this ray in parametric form, with U as

a parameter, can be expressed, when the supporting fluid

medium is homogeneous and is at rest initially, by the

following set of equations

XI* - DCI1 . U
XI2 = DCI2 . U

X13* = DCI 3 . U ( 3 )

where XI*(1,2,3) (XIi*, X1I2*, X13*)
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is a point on the selected ray. The parameter U which is

still undetermined is chosen such that this point XI (1,2,3)

is a point that is common to the ray and a cylindrical

surface of arbitrarily chosen radius

AREF* = 0.5 ( 4 )

This results in a relation

Xl1*2 + XI2*2 = 0.25

which with Eq. 3 yields

U2 . (DC11 2 + DCI2 2 ) = 0.25 ( 5 )

Since the components of Eq. 2 are the direction cosines,

they obey the relation

DCIl 2 ± DC12 2 + DC132 = 1

which with Eq. 5 gives

U = 0.5 / (1 DC132) (6)

Let DCTL be the length of the duct, and A

be its maximum crosseectional radius; then the geometrical

variations in the radial direction (Fig. 59), when present,

can be expressed mathematically by a definition of the local

cross-sectional radius Al (X3 ) as
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AI(X3) = AO +- A2 .X3 ( 7 )

where A2 - (I - AO*) / X

S(-AO) .A/DTL (8)

The point XI*(1,2,3) defined by Eqs. 23

and 20 is considered to be a reference point for the initial

definition of the ray tube area, if the relation

AI*(XI3*) > AREF* ( 9 )

is satisfied.

It is noticed that when the relation of

Eq. 9 is not satisfied, the point XI*(1,2,3) lies outside

the region, in which case it becomes essential to redefine

the value of AREF in Eq. 4 and repeat the process until

Eq. 9 is satisfied; when this is achieved, two additional

points are defined such that

XI (4,5,6) (XII4 ,XI5,xI6*) = (xll*,X12*,X3* + DPHI)

XI (7,8,9)= (XItl*,X8 ,XI9*) = (XIl + DPSIXl2 ,XI3*)

( 10')
where DPHI and DPSI are nondimensional elemental lengths

of absolutely small magnitudes; for example, the results

presented in Chapter 10, later, use
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DPHI =DPSI = 1.0 E -12 ( II )

Originating from the source (Eq. 1) two additional rays are

made to pass through these points (Eq. 10), and defined the

unit vectors in these directions as

DCI(4,5,6) = (DCI4, DCI, DCI6)

=- (4,5,6)- (1,2,3) / I -*(4,5,6) - x(1,2,3)1

DCI(7,8,9) = (DC17, DCI8, DC19)

= *(7,829) - XS*(1,2,3) / I (7I(,8,9) - Xes(1,2,3)1

(12)

This completes the identification of the three rays that are

to be followed in the study of the variations in the ray tube

cross-sectional area during its lifetime.

Consider a triangle shown in Fig. 60. Let

BO, Bl, B2, and B3 be its three sides, and the semiperimeter

respectively; then using Heron's formula its area is given

by the expression

Area [X(1,2,3), X(4,5,6), X(7,8,9)]

= .B3 . (B3 BO) . (B3 - Bl) . (B3 - B2)} (13)
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Fig. 60. Area of a Triangle by Heron's Formula

where BO tX(1,2,3) -X( 4 ,5,6) I

Bl = I1(4,5,6) - X(7,8,9)1

B2 1(7,8,9) - 1(1,2,3)1

B3 1 (BO+1 + B2)

For the purpose of normalization of the

ray tube, consider

ARTo Area [:jI (19,-23), XI*(4v,56) XI*(789)J ( -1-1

to be the reference ray tube area. It is situated on a

reference plane, which is at a distance

RREF* = IxI*(1,2,3) -S (1,2,3) (15

from the source position; hence the pressure intensity there

is expressible as (see Eqs. 7, and 8, Chapter 7)
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PREF* p* ( XI (1,2,3), TREF )

Q*(TI*) / REF* ( 16)

where TREF* TI + RREF ( 17 )

It is recalled that the nondimensional time parameter TI*

is defined as

TI* = c . TI /A (18)

where TI is the time of origin of the selected pulse

in seconds.

After having these quantities as the

initial specifications for the ray tube at the reference

plane, the next logical step is to investigate what changes

they undergo on meeting the solid surface of the enclosing

boundary.

COLLISION WITH THE BOUNDARY SURFACE

For brevity, the three vertex points of

the ray tube in the reference plane, and the direction

coordinates of the three rays are designated, respectively,

by
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I ~J(j, jl, j+2) = (xi*, XIJ+ ,1' xI* 3 )

DCI(j, je 1, j 2) - (DCI J, DC CI 1 DCIj 2 )

(where J = l, 14, ad 7 ( 19)

Let the points of collision of these three rays with the

boundary surface be denoted by

XC,(j, J , j +2) = (XC X * C , X* 2 ) ( 20

The equation for the cylindrical duct surface (Fig. 59) is

given by

F(xl*,X*,3* = 2 + * 2 2  - Al2 X3 ) = 0 (21

where the local duct radius Al*(X3*) at the axial position

X3 is given by Eq. 7.

The point of collision, given by Eq. 20,

is common both to the ray and to the boundary surface; hence

it satisfies the relations

* * * * *XC -XI XC -XI X - XI 2
J1 j ++ J1 J+2 2

DCI DCI 1  DCI+ 2

xc*2  XC *2  (Ad* Ae Xj* )2 0 220jD + 1 D 2+22
XC* 3-+1* - A4+A* Oj+2 2
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Froi the first of these relations, the following set of

equations follows

* *I* I*

X. Al2 (XC 1  3I ) + XI
At j* -t-1 i

(23)

XC = A32 (XC* -XI ) + XIJt2 " +1 * 1 J+2

where A12 = DCI / DCIj1 , A32 = DCIj3 2 / DCIJ+1

Substitution of these in the latter relation of Eq. 22-yields

a quadratic equation for the determination of XC*
jjtl

2 2

AA IGj + 2 BB .C Jtl- CC =0 (24

where AA = 1 A122 + (A2* . A32)2

BB = A12 . (XI - A12 . XI I )

- A2 . { AO@ + A2 . (XI *J2 -A32 . XI j+ 1CO = A0 + A2 . (XI - A32 • X) *
J*2 J+1

e a 2
cc tAO*4 A?* (X[* - A32 XI* *)

-(XI* -A12 *XI*3l 2

The two roots of this equation are expressed as

XCj+1 = UMX, or UMN ( 25

where UMX = max (UA, UB)

UmN = min (UA, UB)



UA = (-BB + D )/ AA

UB ( - BB ) / AA

D (BB 2 + AA . CC

Noticing that the vector drawn from the point

XI (J3,3J1,J2) towards the collision point XC*(J,3J-+1,J 2)

must necessarily point in the positive direction of the

propagating ray, depending upon the value of the direction

coordinate DCI , there result the following two cases :

Case : DCI 3 1 > 0; then XC = UMX

3*. (26)
Case 2 : DCI1 0; then XC*J = UMN

Substitution of thus selected value of

X J+l in Eq. 23 completes the determination of the collision

point XC (j+lj+2).

REFLECTED RAY

Since Eq. 21 describes the cylindrical

surface, the equation satisfied by the inward normal to the

tangent plane (Fig. 61) at the point XC (J,Jl,J+2) can be

written as

(Xl* - Xej)/al = (X2* - XC* J)/a2 = (X3 - XC*j2)/a3

(27)
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where al, a2, and a3 are the direction ratios given by

*al = - F = -2.XC

- -* ( I +l, Jt2)

a2 = -Fx* = - 2 XC j

J-1 X $*(J,$+1 J+2)

a3 - -Fx* = 2 (Ao t A2* . X 2) . A2
i J+2 *( , + +)j 2J2X C*(J, J+l, J+2)

Let aO (al 2 + a2 2 + a32) ( 28)

then the direction cosines of the inward normal are given by

DCN(J, J*1, J+2) = (DON, DON , DON )

i J+11 J+2

- (al/a0, a2/a0, a3/a0) ( 29 )

The angle of incidence o is given by

cos C = -(DCI . DON + DCIj . DCNj 1

+ DCI + . DON ) ( 30)J+2 J+2

Since the angle of reflection is equal to the angle of

incidence, the direction coordinates for the reflected ray

can now be expressed as

DOR(J,Jtl,J-2) - (DCR3 , DCRJI , DCRJ 2 ) (31)



where DCR k = DOIk + (2 cos oc) . DO Nk

for k =J , J+1, and J+2

The knowledge of these now enables the location of any

required point on the reflected ray. Let

xR*(JJJ2) =v (XR R J+l' XR J+2)

be a point that is common both to the reflected ray, and, say,

an imaginary cylindrical surface of radius RAD* (Fig. 62);

then the equations determining this point are

XR - XC XR -XC XR - XC
3 J j+1 J+1 J+2 J+2

(32)
DCR DCR DCR

JJ J+1 2
R R+1-RAD* 2 =~ 0 ( 33 )

Let A12 = DCR /DCRj 1

A32 = DCRJ+2 / DCRJ+1

then Eq. 32 can be rewritten as

R = AI2. (+R - XC ) + XC
A32+1 J+l +

R+ 2 = A32 (XR I j X1jel ) J*2



7O 8,9)-gg (4,5,6)

X&'(7,8,9) g, ,2 ,3

CG il4,5,6)
/1*(4,5,)

1, 2 3) DR 7B,9)
AREF* x RL7,8,9) l(4,5 ,6

RREF* RAD-
SOURCE

A

xf'(1,2,5)"

"-,44

Fig. 62 Inoident and Reflected Ray Tube
Ha
C3
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Substitution of these in Eq. 33 gives a quadratic equation

for XR as
.

AA . XR2 X*
JAl + 2 BB . XJR - CC = 0 ( 35 )

where AA = 1 + A12 2

BB = (XC* - A12 XC* ) . A12
J 3+1

cc = RAD 2 - (BB / A12) 2

Hence XR*+ - tX, or UMN (36)
J+1

where UIMX = max (UA, UB)

UMN = min (UA, UB)

UA = ( - BB + D ) / AA

UB = ( - BB -D ) / AA

D = (BB 2  AA . CC )

There are two possible points, each one

lying on either side of the duct axis, of intersection of the

reflected ray with the cylindrical surface of radius RAD*,

let these be denoted by g (3, QJ1,3J+2), and XRB J,J+,J2),

the former being nearer to the position XC (j,J+1,J+2)

(Fig. 63); then depending upon the value of the coordinate:

XC ~1 there result the following two cases :

Case 1 : XC 1 > 0; then XRA* - UMX
jd J+1

and XRB -- UMN
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Case 2 : XC < 0; then XRA* =  MN
jtl jtl

an XRB* - UxxJ+1 ( 37 )(37)

Substitution of these values in Eq. 34 completely determines

the two points XRA*(3, J+1,J+2), and XRL *(J,j ,J+2) on the

reflected ray. An additional point on the reflected ray that

can be obtained comparatively easily is its intersection

point with the duct axis. The coordinates of this point

are given by

* *
XRF - xRF = 0J J+l

XRF* X0 -(DOR / DCR ) XCJ+2 J+2 J+2 j+1 3+1

(38)

The above analysis provides a technique for

the successive determination of the points that are traversed

by the ray tube during its propagation through the medium.

If any of these points happens to be coincident with the

given receiving point, then there it is necessary to evaluate

the contribution to the pressure field from this ray. A

procedure for this is developed in the following section.



PRESSURE CONTRIBUTION AT THE RECEIVING POINT

The receiving points are the preselected,

or the given, positions in the region at which the pressure

field is to be determined. This pressure field is the

radiation effect of the emission from the given acoustical

source. It is recalled that in the Monte Carlo technique use

is made of a finite number of elementary pulses, and the

corresponding ray tubes with randomly selected ray directions,

for the representation of the radiation effect of the source

in question; the effect of any particular ray, characterizing

the propagating disturbance signal, being considered to be

confined within the ray tube. This clearly points out that,

for a ray (oac,(,I') to have a pressure contribution at a

given receiving point, denoted by,

3a*(l,2,3) (xRl*, XR2*, XR3*) (39)

the corresponding ray tube must necessarily encounter thisc

point during its propagation through the region.

The occurrence of such an encounter is

tested by localizing the receiving point with respect to the

variable point on the ray trajectory. It is easily shown

that for the ray tube to be in the vicinity of the given

receiving point (Eq. 39), it is essential to have satisfied
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one of the following two relations :

XC3 < XR 3 < XRF 3 (40)(i .o )
XRF < XR3 < xC3

where XRF* (1,2,3) = (XRFl , XRF2 , XRF3*)

xc*(l,2,3) (xC l*, x02*, G3*)

are the latest points of intersection of the

ray ( ,3,,') with the duct axis, and the duct

boundary surface, respectively.

The relation of Eq. 40 ensures the localization of the ray

tube and the receiving point in question within two cross-

sectional planes (Fig. 63)

* *
X3 -XRF3

(41)
X3 zXC3
x3" = xc3*

Test Sphere

Consider a small elemental sphere, surroun-

ding the receiving point (Eq. 39), with a nondimensional

radius 2 , a preassigned small value, and the receiving point

itself as the center. Along its trajectory, if the ray (,,(

intersects the surface of this test sphere, the receiving
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point is considered to be under the influence of this ray;

and the pressure contribution is estimated. In addition to

the value of the normalized ray tube area, the other variable

on which the pressure contribution depends is the extent of

this ray penetration into the test sphere. It is seen

to be maximum when the receiving point lies exactly on the

ray trajectory, in which case the ray penetration is twice

the radius of the test sphere; on the other hand, the ray

penetration, and hence the pressure contribution fromthis

ray, is zero when the ray is either just tangential to the

test sphere, or does not touch it at all.

Penetration Distance

Let (xl,x2,x3), and (yly2,y3) be the two

points (Fig. 63) that are common to the penetrating ray, and

the test sphere; then since this ray also passes through the

axial point XRF (1,2,3) given by Eq. 38, the set of equations

that is available here can be expressed as

xl /DCR1 x2 / DOR2 (x3 -XRF3*) /DCR3 ( 42 )

(xl - XR1*) 2 + (x2 - XR2*) 2 + (x3 -XR3*)2 - 2  O0

(43)



xQ_ C I,2.3)
X2*\ *U23

50 RC CoRo)

RADn - ..1, 2 5)"X3t  t/

XRF3"< XR3 < XC3*

RA RAR f,2,3)
TES SPHERE

Fig. 63 Toest Sphere and the Ray Penetration

R O

XRF3t'< XR3'< XC3 t

RA ( s~)XR?*,2,3)
TEST SPHERE

Fig. 63 Teat Sphere and the Ray Penetration
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Equation 42 gives

xl = (DORI /DCR2) . x2

x2 = (DCR3 /DCR2) . x2 + XRF3 ( 44 )

Substitution of these in Eq. 43 results in a quadratic of

the form

(DCR1 /DGR2)? + 1 + (DCR3 /DCR2) 2  x2

2 [-(DCR1/ DR2) .XR1 -XR2

S(DcR3 /DCR2) . (X F3* XR3*) %2

S 2 (x1*2 + x22) (xjF3* .xR3) 2  - o

(45)

Utilizing the relationship that is satisfied by the direction

cosines, viz.

]DCR1 2  DOR2 2 + DCR3 2  1

and defining

AA = I / DCR2 2

BB = - (DCR1 /DCR2) . Xl - XR2

(DCR3 / DCR2) . (XRF3* - XR3*)

cc = 2 - (XR1*2  XR2 2 ) - (XBF3* XRj3*) 2

( 4.6 )
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Eq.'45 is rewritten as

AA . x2 -1- 2BB .x2-CC 0 ( 47)

of which one root corresponds to x2 (Fig. 63), whilst the

other corresponds to y2; then it indicates that

(x2- y2) 2 = 2 (BB2 - AA . CC) / AA2  ( 48 )

Using Eqs. 44, 46, and 47 it can be shown that the pene-

tration distance AR* of the ray (a,3,y) into the test

sphere is given by

AR*2  (x - 71)2  - (x2 - y2)2 + (x3 - 3)2

= AA. (x2 - y2)2

2
2 (BB /AA + 00C) ( 49 )

It can be easily seen from this expression that A R* is

real, i.e. the ray penetration takes place into the sphere,

only when the relation

BB2 /AA + CC > 0 ( so50 )

is satisfied.
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Equivalent Distance

Reference to Eqs. 16 and 17 above shows

that at the instant TREF the ray (o , ,y ), that is

presently under progress, contributes a pressure PREF* at

a distance RREF from the source position XS (1,2,3); it

is also recalled that the ray tube cross-sectional area

was denoted there by ART* , the reference ray tube area

for the normalization.

Consider now the divergence factor DF12

defined as (see Eq. 17, Chapter 7)

DFi2 =(AR TO* /ARTR*) ( )51

where ARTR* is the cross-sectional area of the same ray

tube, but in the proximity of the receiving

point XR *(1,2,3).

It is now argued that since the ray tube

was at a distance RREF* from the source when it had its

area as ARTO , the receiving point XR *(l,2,3) where the

ray tube area is ARTR can be thought to be at an

'equivalent distance' REQ from the source; this equivalent

distance REQ* being defined mathematically to be

* *
REQ = RREF / DF12

RREF /DFl2 + AR* /2 ( 52 )
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Introducing the 'penetration factor' defined as

PNF= (RREF /DF12) . (AR / DF12)

* *= REQ . R /DFl2 (53 )

it is possible to express the pressure contribution from

this ray (o ,/ , ) at the receiving point R (1,2,3)

using Eq. 16, Chapter 7, in the form

pi (R*, T*) = PREF . DF12 PNF

- PREF .REQ . R ( 54 )

where T = TREF + REQ

= (TI* + RREF*) REQ Q

using Eq. 17 above .

As was explained in Chapter 7, the given

length of the total transitional period, the period for

which the solution is to be studied, is divided into J time

cells, each of duration ALT , and p is considered
•* * T*

to be the mean value of the pressure pi (XR , T), given by

Eq. 54, taken over the jth time interval, i.e.

*
(* (i /T *) fP*(X T*) dT*

ii--
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- (PREF* . REQ . ( 5 )

where J = T /AT* - 1

= (TI* + RREF* + REQ) / Al * t+ 1 ( 56 )

The index i that is introduced as a suffix to the right

hand side expression of Eq. 55 is Just to recall the fact

that the quantities included in the bracket there are those

of the ray tube that has originated from the randomly

selected pulse with the integral index i.

It is emphasized here that the pressure

value given by Eq. 55 above is an averaged pressure value

that is obtained by the process of averaging over an

elemental, but finite, space-time volume

Av . LT* (4/3) 71Z 3  AT* ( 57)

of the test sphere, that replaces the actual receiving

point in the Monte Carlo technique.

The process leading to the relation of

Eq. 55 is repeated for the totality of NR ray tubes in

a particular sample, and the pressure is accumulated over

the time cells for a given receiving point. This completes

the ray tube processing.
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VARIANCE ANALYSIS

The data accumulated while the ray tubes

were being followed are now analyzed. At the end of the

processing of, say, NR ray tubes, the accumulated pressure

values in the different time cells are averaged over the

number NR , and the space-time volume of the test sphere

(Eq. 57) used therein to represent the actual receiving

point. The pressure field thus accumulated is then expressed

as

p (XR) = (T /NR .AV . AT) .
p

NR
. (PREF* .REQ.R) ( 58)

This expression is seen to have a striking resemblance to

the algorithm of the former part of the dissertation (see,

for example, Eq. 26, Chapter 3).

Equation 58 represents a single statistical

sample, as a result of the Monte Carlo calculations; and

further requires the knowledge of the standard deviation.

This is obtained by repeating the calculations leading to

Eq. 58 in, say K different blocks. The results of these

are conveniently expressed as
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_* * * * . *•AR

p IXR )k (T NR k V)

Nk

S(PREF* .REQ!. R*)
11

(59)

where NRk is the number of the ray tubes followed

in the kth block

( 1 . k K).

By assigning equal statistical weight to

each selection, the required pressure field, which is the

statistical mean of all the samples, is given by

K

p (XR*) = k. [p *(X*) ( 60 )

k 1l

where Wk  is the statistical weight defined as

K

Wk  si k p NR t61 )

i-

The variance of such a pressure field is then given by
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K

D2 p,* (XR * qk2. *k 2
k~k

k =1

2
* 2 (62)

Pj-

where 6 . is the required deviation of the
p predicted acoustical pressure in

the jth time interval at the

receiving point XR*(1,2,3).

The results of the application of the

Monte Carlo technique thus developed are presented in

Chapter 10; before that, in the following chapter, the

problem of the pressure field inside a duct of constant

radius is studied from the normal mode point of view.



Chapter 9

PRESSURE FIELD INSIDE A CYLINDRICAL DUCT

NORMAL MODE SOLUTION

The problem that is considered here is the

investigation of the acoustic field inside a region bounded

by a cylindrical duct surface, using the normal mode point

of view. In practical applications the walls of a sound

conducting duct possesss certain amount of elasticity, and

heat conductivity. Inclusion of the finite elasticity and

heat conductivity considerably complicates the solution of

the problem. In order to visualize the situation more clearly,

the side walls of the duct are considered to be absolutely

rigid, and non-heat conducting. The supporting medium inside

the duct is assumed to be homogeneous, and at rest initially.

The duct is considered to be rigidly closed on the left, and

terminating on the right in a perfectly absorptive medium.

200
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Consider a pressure field caused by a simple

point source, radiating from a given source position x s in

the field. It is governed by a nonhomogeneous wave equation

of the type

[ 11 "*(/2 )( 21 t2 ) -v 2}P(x_,t) ( /~t) .-

(1)

where c is the characteristic wave speed

P(Xr,t) is the fluctuating acoustical pressure at a

given receiving point Xr, at time t

m is the rate of mass injection, per unit volume,

from the source centre.

When considering the field analytically

inside a cylindrical region, as is done here, it becomes

more convenient to use the cylindrical coordinate system

(r, , z) (Fig. 64) instead of the usual Cartesian coordinate

system. In this case Ea. 1 takes the form

D2/Dr2 +(1/r).(P/c r) i+ (1/r2).(o2/) e 2 )

) (2/)z 2  - (I/c2 ).(a2/Ct2 )j p(r, ,z)

= (a 2/t 2)m. (x -xs) ( 2)

where x = x(r,., z).
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r

r

r=a

z =0

Fig. 64. Cylindrical Duct Coordinate System

The pressure field p(r,8 ,z) satisfies the boundary conditions

i. p is a continuous function

ii. the radial component of the pressure gradient

vanishes at the boundary walls, i.e.

(Z p / r) = 0 at r a ( 3 )

iii. at a reference plane, z =0, normal to the duct

axis, the perturbation due to the source is

specified as an arbitrary function of r satisfying

(i), and (ii), and a periodic function of time t.
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In linear acoustics, for the. inviscid medium,

in the absence of the convective velocity, the relation

between the particle velocity v, and the acoustic pressure p,

at any point in the medium, is provided by the momentum

equation

g (2v / D t) -~p = 0 ( 4 )

At this point it is convenient to define the

following new variables, similar to those used in E6.1 of

Chapter 7,

* * t* =* 2
r = r/a, z = z/a, t =ct/a, p = p/ c

* * * s* X/
m =m/S , v =v/c, xr  /xra, x xs/a

and rewrite Ea. 2 in the nondimensional form as

) 2/dr 2 ) + (l/r*).(/Dr*) (1/r*2 ).( 2// 2)

0 2/ 22 2

(2/c)t* 2 ) m -x ) ( 6 )QS mXr~x* 6
* p*(x*t*) p***

where p p. (x ,p (r ,z ,t )

The pressure field inside the duct is now

assumed to be expressible in the terms of the natural modes

of vibration as
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' (Zt*) R (r*).(a cos iO t b sin i8( xr ,t* j .R

i=0 j:=0

where i is a characteristic number restricted to the

integral values by the continuity requirement

p()- p* (8 27)
(8)

p *(8 e p -'( 9 -t27T)

(prime (') denotes the differentiation

with respect to the argument)

ai, bi are the coefficients to be determined from the

given boundary conditions in the reference

plane #= 0.

Substitution of Eq. 7 into Eq. 5 results in the separation

of equations

(82/ r'2) + (1/r*r.(2/ar

S(K 2 - i2/r*2) Rj(r) = 0 ( 9 )

(32/t* 2 ) - (3 2 /3 z*2 ) K p * (Z t

1jj

- ( 2 ) t .t ) m*. J - ( lo

2
where - Kij is the separation constant .
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The characteristic value Kij, which in turn fixes the value

of the separation constant -K 2 is determined from the
ij

appropriate boundary conditions at the duct walls, such as

that presented by Eq. 3 for the particular case that is

under investigation here.

Equation 9 is recognized to be a Bessel

equation of order i, and as such its solution is expressible

as

(r*) Ji(Ki r ) ( 11 )
ji ij

.thwhere J is the i t h order Bessel function of the First Kind.

It is observed that the boundary condition

at the duct walls, given by Eq. 3, is satisfied if and only

if the characteristic values K.i are the roots of the

transcendental equation

Ji' ( K ) = 0 (12)Ji Kij 01

In other words, the characteristic values Kij are the

successive zeros of the Eq. 12, where the index J takes on

the values 0, 1, 2, .... successively.

A similar expression to that of Eq. 7 can be

written for the particle velocity v,(x _t ). Then using

Eq. 4, it can be shown that the relation satisfied by the

axial component of the particle velocity, denoted by v (z ,t
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and the corresponding pressure p *(z*,t*) during the jth

mode of vibration is

-p Vzz v /t (13)

The medium is considered to be quiescent

initially, and hence the initial conditions for the problem

can be expressed as

p (z*, 0±) = 0 ( 14 )
v z, o ) 0. o 15)

3.pj*(z*, O)/ Ct* = 0 ( 16 )

where the source is initiated at time t = 0

Now the pressure p (z*,t*) is expressed as

the sum of two components
* " " (*)(1

p (z , ) qjz ,t + gj(t*) ( 17 )

On substitution, this allows the separation of Eq. 10 into

the following two equations

(.2/at* 2 )+Kij 2 }g (t*)

(d/dt*) m . - x ) ( 18 )

(2- ( 2/iz 2 ) + K 2 q (z* ,t*) 0 ( 19 )zJ-o(9
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with the corresponding initial conditions as

g (O ) = o
0 1( 20 )

0gj(o) /t* 0

qj(*,O) = 0
( 21 )

aqj(z ,0+) / t* = 0

The solutions of Eqs. 18, and 19 can be

obtained most conveniently by the use of the Laplace

Transforms. Defining

-st*
g(t*)= G ( = e-S g (t*) dt*

0 J
(22)

{*(t*) M*(s*) = e -s t *(t*) dt*

0

*
where s s a / c

and taking the transform of Ea. 18 results in, on making use

of the initial condition given by Eq. 20 above,

G (s*) = s*. M*(s*)- m(o) }/ (s2 K ij 23

Using the convolution theorem, the inverse transform of Eq. 23

is expressible as
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t*

g(t) = (t*- ) cos K d
0

(sin Ki t . .(0t) K .0 (x r* x13 1 ijj

(24)

Similarly defining
CO

9. q(z ,t ) = VQ z ,s*) = e s  q j(z *,t*) dt

0

(25)

and taking the transform of Eq. 19 results in, on making

use of the initial conditions given in Eq. 21, a differential

equation

(3 2 /az . 2 ) - (s*2+ Ki J2) Q (z ,s ) = 0 ( 26 )

This has two solutions given by•2 2 . *
e xp [+(s*2 K ) z

Q (z ,s*) S(s*) { 27)

K 2) z*exp E- (s . 2 + Kij " ]

-where S(s*) is an arbitrary function , to be determined

from the specified distribution of the source function in

the reference plane z = 0
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From these two solutions only the one is

selected that vanishes at z = +c; and it is given by
* *s* _(s2 2

Q(z ,s ) S(s ) . exp -(s* 2 + Ki) . z ( 27 )

On partial differentiation with respect to z , this gives

)- S(s) (*2 K 2) 28)
ij

Using the initial condition given in Eq. 15, the transform

of Eq. 13 can be written as

TQ.(z ,s ) / Dz - -s V (Z )

This together with Eq. 28 gives
* *2 2}

S(s* ) s V (0, ) / ( + * K.
j ij

substitution of which in Eq, 27 results in

Qj(z ,s ) s . V (0,s ) D(s ,z )

where
ij

weD(a * s )=exp -(s*2q Kij2) . 3 (s*2+ K 2)

( 29 )

From Tables of Laplace Transforms (for

example, Abromwitz, 1964, p. 1027, and p. 1021) the following

relations are obtainable
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t* *

0 ,t < z

D(Z*"s*) (t* 2  z ) 1 , > z

-1t

S(l/s*). Q (z * 's) ) d
0

t
-1 * s f (t*

(1/.,s€). (s*} a. . -, ) - c d

0

Using these results the inverse transform of Eq. 29 is

expressed as

.10 , t < z

f qj(z,t ) t
0t*

z z ,* *t*- JO

t z

Differentiation of this relation with respect to t gives

St* *

q (z,t*) ( 30)

v t z

where I = (3/c3t*) [ vs *(0,t - ) . O [Ki .( 2-z d

For the evaluation of this expression use is made of the
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Leibniz's rule which states that

g1 (t")

(wat*) - f(t*, & ) d

go(t*)

g1 (t*)

= 3 f (t ,t ) / * . d(

g 0 (t*)

- - t*,go(t )] . dg 0 (t*) / dt

-f t*,gl(t*)] . dgl(t*)/ dt ( 31 )

Here f(t*,~ ) = vj (0,t - ) . JO EK J.( 2 z*2) j

zzJ

g0(t*) = z ; gl(t,) = t

• 1 * 0,1*

ft(t ,( )/at = [(3lat*). vzj (~ - )] .

-- JO iK ( 2- z * 2 )  (za) (0,# - )

dg 0o(t)/dt = 0 ; dgl(t*)/dt 1

f tgl ( t * )  = 0 since vzj ( 0 , 0 ) = 0

Substitution of these values in Eq. 31 results in the
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the following expression for I

t

I- - JO[iJ "( 2 - z2) ./ )Vzj (ot*- ) ad

za

Let uJOLKij. .(2- *2) 1

dw=(0/a vs (o 0't* - ).

du =Jo 1 i . 2 -*2 ) ] [K .( 2 -*2) J

-- JK.. ( q2 - *2 / 2_ z*2) d

since J = 1

then making use of the rule of integration by patts

t

I = vzj *(O,t -z )- vzj* (O,t~ .- ) . J [KJ .( 2 z*2 ) J

z .[j. (2 -2 2 d{zj zj 1 i

( 32 )

Then using Eqs. 7, 11, 17., and 30 the pressure field inside

the duct is expressed as
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CO Ce

p ( ,t) - (K r*).(a. cos iG - b sin iO ).

i=0 j=O

0, t < zt*) I . .
I, t > z

(33)

It is noticed that the expression for g (t )

as given by Eq. 24 contains a Kronecker delta function, and

as a result it does not contribute to a pressure field at

any other point different than the point coincident with the

source position.

Eventhough from the knowledge of v .(0,t*)zj

it is possible to evaluate I in Eq. 33 (see Eq. 32), yet the

pressure field cannot be determined, since the values of the

coefficients a.,and b. are still undetermined; these are
1 1

determined from the matching conditions in the reference

plane z 0 as shown below.

From Eqs. 13, and 33, following a similar

procedure as above in the use of the Lebinitz rule, and

carrying out a few mathematical steps, it can be readily

shown that the expression for the axial component of the

particle velocity inside the duct reduces to
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v ( V*( , e,z ,tX)Z. Z. t

CO C 0 t < 

.2 J.(K r*).(a. cos iO + b. sin i).
13j 1

i=0 J=O * I, t* z
t -z

where I = v *(o,t*-z*) - s v (ot * z*)= zj - zj (o t - - .

0

. [Ki.. ( + 2z*) i" Kj/ ( + z* )  " d

Thus in the reference plane (z = 0) the axial component of

the particle velocity is given by

z ~ J (K ij 1v (r, , 0, t*) = J Kj ) .(ai c os iG

i=0 j=o0
b. sin i6 ).v (0,t*)
1 z

( 35 )
In order to determine the numerical

coefficients ai, and bi in the above expressions it is

necessary to specify, for example, certain distributions of

the velocities in the initial section z- O, as an effect of

the actuating source. In general it has the form

v*(r ,0,,t*) F(r*,6 ).T(t*) ( 36 )



where the function F(r', 8) can be expanded into a double

series involving the characteristic functions of the problem

that is under investigation

F( , ) =  (oij cos i9 Pij sin i ).Ji(K ij*)

= 0 ij ij=Oii=o jo ( 37 )

Using the orthogonality property of the trignometric functions,

and the Bessel functions, the coefficients, and 1" are
U4j ij

evaluated; the resulting expressions (Rschevkin,1963,p.193)

are

1 2 7

1/7 J 2(K0 jr F(r ).J (KOjr ).r* dr do

0 0

3j = 0Oj
1 27t

<ij / (1/Mij) F(r*, 6).J.(K. r ).cos iO .r dr* dO
13 i. 13x

0 0

1 29

= (1/7ij) F(r*, ).J (Kijr*).sin iE.r* dr* do
ij

0 0

where M..= (K/i) - J J 2(K )

S- 38 )ij

(38)
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When the source is a simple point source,

in the proximity of the source plane (z 0), the disturbance

propagates as the plane wave motion; then the velocity
.

distribution resulting from the source in the plane z = 0

can be expressed, for example, by the functions

F(r,e ) 1

*

0,- t. ., 0

T(t) = sin (2Tit /T ) , 0 <t < T
P P

* *
0 , t TPp

(39)

where T c T / a , T being the period of the source
P P P

pulse in seconds.

Then in this case Eq. 38 gives

1

0j = 2/J02(Kj) J 0 (Kojr ).r dr

0

/3 0
oj

ij ij , for i #: 0 ( 40 )
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These relations together with Eqs. 36, and 37 give

v*(r*, 6,o,t*)I O J (Kj r ).T(t*) ( 41 )
Oj 0 Oj

-J=O

Comparison of Eqs. 35, and 41 shows the matching condition,

viz.

* * , t*

V (r , o, ) = v*(r*,&,o,t*) (42)

requires that for the particular source, having the source

functions defined as in Eqs. 37, and 39

i = 0

aiV (ot*) =  oj.T(t* )  ( 43 )

In the light of these relations Eq. 33 can now be rewritten

as

t** 44
p*(xr j* Z c 0j. 0(K0jr*) .~g 3(t ) ±+L~1

o ,t* z

where I = T(t*-z) - T(t* - ).J 1 K Oj'. 2- z*2)

Z 2 z2 . d
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t

= T(t*-z*) t T(t*- ).J0 '[KOj. 2-z2)lr-
z

.~d [ K0o.( ~2 -*2) J/ di dV

Let dw= J [ 0 .( 2-z*2) d " j  K 2z*2) /d} . d

u = T(t - )

then w = J 0 [K0 j.( 2-z*2) j]

du = - ,(t*- ) d§

Use of these in conjunction with the rule of integration by

parts reduces the above expression to the following form

t*
I T(t -_z + T (t*- ).JO j -e

T't - .J Oj.(t-sy - d.OKj(2'z2i -z

t*

Z

since T(O)=0 , and J1(0) 1

(45)
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In order to evaluate the coefficients oj
in the above relations, use can be made of the following

property of the Bessel functions

(d/dx) xn Jn(x)I = xn J nl(x) ( 46 )

which, for the particular case with n =1, on integration

between the limits 0 and 1, gives
xX• f

x . J (x) = t . Jo(t) dt ( 47 )
0

Let t= KO . r ; then
Oj

1 KO
S J (K0 jr) r dr* = (1/K 0 J2) 0 t (t) dt

r0 0

Si(KJ / K
j 05 0

Substitution of this result in Eq. 40 simplifies the expression

for the coefficients in the following form

Oj = (2/Kj (Kj J 0
2 (K0j) ( 48 )

The numerical results from this analysis

are presented in the following chapter, as a comparison with

those obtained from the application of the Monte Carlo

technique presented in the preceding chapter.



Chapter 10

CALCULATIONS FOR CYLINDRICAL DUCT

PRIASSIGNhD CONSTANTS

For the demonstration of the applicability

of the proposed Monte Carlo technique to a problem involving

a curved boundary, the acoustic source is considered to be

of sinusoidal shape, characterizing its strength-time

history. The following is a list of the preassigned constants,

used in this problem, expressed in dimensional form (FPS

system) :

Source Strength Factor O = 1

Source Period T = 2.0 E -03p

Duct Radius A 7.5

Wave Speed C = 1.10 E 03

Elemental Time Interval A T =5.0 E -05

Characteristic Mass Density of the MediumfP=- 2.3780 E-03

Source Cartesian Coordinates XS(1,2,3) (0,0,0) )

Receiver Cartesian Coordinates XR(1,2,3)= (1,3,10)

220
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Duct Minimum Radius AO = 7.5

Duct Length DCTL = 1.2 E 02

Radius of the Test Sphere Z= 1.0 E -01

DPHI = DPSI = 1.0 E -12

No. of Rays followed in one Sample NR = 5000

MONTE CARLO SOLUTION

The Monte Carlo results are shown compared

with the Normal Mode calculations in Fig. 65. These Monte

Carlo calculations consisted of five blocks, totalling

2500 selected ray tubes; and took 189 seconds of core time,

each block requiring about 39 seconds of core time, on the

CDC 6400 computer at the Computational Centre of the

University of Virginia (Appendix 7).

NORMAL MODE SOLUTION

The Normal Mode solution included the

summation of the series for the first 26 modes. In order to

save the computational time, extensive use was made of the

tabulated results for the requisite zeroth order Bessel

functions, first order Bessel functions (McClain, 1962),

and the successive zeros of the Bessel function of the

first order (Watson, 1962, p. 748).
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The approximate evaluation of the definite

integral (Eq. 32, Chapter 9) appearing in the expression

for the pressure field by the Normal Mode method was

carried out separately by making use of two different

methods, the first was based on the composite trapezoidal

rule, repeated interval halving, together with the Romberg's

extrapolation technique; whilst the second one was based on

the Chebyshev's formula (Rekotrys, 1969, p. 594) for six

terms. The normal mode results from these two methods were

found to be in close agreement(Appendix 8).

OBSERVATIONS

It is evident from Fig. 65 that the results

of the Monte Carlo technique are in close general agreement

with those from the Normal Mode method, when it is considered

that the Normal Mode solution should only be expected to be

within the limits of plus and minus one standard deviation

about 68 % of the time,.

Another point that is noticeable is the

certain amount of shift along the time axis. In the Normal

Mode solution the time interval between the commencement and

the termination of the pressure contribution at the receiving

point is sharply defined, thecommencement being coincident

with the instant at which the initial portion of the direct
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disturbance wave reaches the receiving point. Obviously this

is a minimum time that a disturbance wavefront takes to reach

the given point. In contrast, in the Monte Carlo solution

since the directions of the ray tubes that are followed are

selected at random, the probability of selecting the exact

values of the direction components coincident with those of

the direct ray is negligibly small; and as a consequence the

randomly selected signal path, in general, takes a certain

amount of additional time before reaching the receiving point.

This results in a certain amount of shift along the time axis.

Using Eq. 15 of Appendix 2, the probable

relative error in the calculated pressure values can be

expressed as

prob = (0.68/Eipj* ) . (pD2  ' /N)
prob

where E pj* is the expected pressure value at the

time index j

D2,pj* is its variance

I is the sample size

Choosing J =30, for example, it is seen from the printout

results of Appendix 7 that

E P3  1.16754349 E -04

D2p = 1.89393499 E -07
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N = 5000 .

The corresponding value of the probable relative error is

0.035
prob

In general, the values of the standard

deviations for the Monte Carlo results of Fig. 65 are

relatively" high, indicating a wide scope of further

refinements in the basic sampling technique, directed

towards the reduction of the variances.

In Fig. 66 are shown the results of two

additional blocks of the Monte Carlo calculations; the curve

corresponding to Block 3 is the same as that seen in Fig. 65.

From Fig. 66 it can be concluded that, for most part of the

observational period, the Monte Carlo solution is in general

agreement with the Normal Mode solution.
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Chapter 11

CONCLUSIONS

The Monte Carlo technique is developed and

proposed for the determination of the pressure-time history

at a chosen point in a partial enclosure. At present, its

applicability is demonstrated when the medium is homogeneous

and is enclosed by either rectangular or curved boundaries.

Although the present study considers the behaviour due to

simple point sources, it is possible to study the effect of

any sort of source by building up a distribution of point

sources of various intensities.

When all of the acoustical material is on

one surface of a room, the room is never satisfactory

acoustically as there are prolonged reflections between the

opposite surfaces which do not have acoustical material. The

Monte Carlo analysis of the transient acoustic field, presented

in Chapter 5, is restricted to rooms containing no 'sound

scattering' obstacles, having each wall uniform absorption.

The removal of each of these restrictions is essential in

227
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making the proposed Monte Carlo technique more generally

applicable and requires further study. In order to make the

Monte Carlo application economically competitive it is

highly desirable to explore the possibility of implimenting

one or more of the variance reducing techniques, such as,

Stratification, Control Variates, Antithetic Variates, etc.

As emphasized by Knudsen (1940), it is

the detailed nature of the sound decay, especially during

the early stages of decay, and not merely the average rate

of decay, that affects the acoustical excellence of the

music rooms or the auditoria; thus it appears that a fairly

detailed experimental and theoretical investigations of the

short term transient response of rooms having various shapes

and absorptive treatments should prove highly instructive.

The proper control of the distribution of sound energy

throught a room and of the growth and decay of sounds are

the prime objectives of good acoustical design. One attains

scientifically rigorous and predeterminable control of these

objectives by a comprehensive study. The proposed Monte Carlo

technique, when developed further, is foreseen to provide

valuable computational tool in such a study.

For complex problems, it is anticipated

that, the proposed Monte Carlo approach may prove to be

exacting and even indispensible; but before long one needs
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to make developments, in brief, on the following lines:

a. Adapt the method to inhomogeneous and moving

media. This means that a method of tracing

the signal paths through variable media, in

the presence of flow is required

b. Adapt the method to problems involving

scattering, which is present in many

problems of practical interest. Analytical

solutions can be obtained in simple

geometries, such as scattering of plane

waves by cylinders. On the other hand,

scattering is ignored in classical optics.

The problem here is to develop a 'game'

under which the signal paths passing

near an obstruction are deflected, so that

the averaged result is correct.

It is seen from these subtasks that the

research interest here encompasses such works as the development

of the requisite probability theory as direct application to

the many variable phenomena in acoustics, analysis associated

with complicated boundary conditions in the acoustic radiation

theory, and computations of acoustic interaction effects with

due considerations to the problems in energy conversion

mechanisms.



230

The subtask (b) above, relating to scatt-

ering, is judged to be the critical problem. A detailed

study of known analytical solutions is called for, both to

provide insight into the problem and to provide checks for

future Monte Carlo calculations. The major difficulty here

is that the equations governing the deflections of the signal

paths have to be formulated when the results are given in

terms of wave solutions. The ultimate measure of a mathematical

model and the sampling techniques for its analysis is the

degree to which their applications produce satisfaction to

its user. This satisfaction can usually be produced when the

computed values agree with the reliable experiments; and

makes it essential to undertake certain experimental model

studies for the final verification of the Monte Carlo results.

The research work, directed towards the

further development of the proposed Monte Carlo technique

into a valuable tool for applications to cases involving

inhomogeneous medium and complex boundary conditions,

presents a field of research which not only is fascinating

but also holds promise of marked improvements in the

understanding of the transient acoustic fields.
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Appendix 1

SIGNAL PATH FORMULATION

The Monte Carlo technique that is developed

in Chapter 3 investigates what happens to the field in terms

of the disturbance signal paths originating from the energy

source, and based on the information so collected, reconstructs

the field as a function of the space and time on a statistical

basis. The formulation of the signal paths can be Justified

from the viewpoint of the Helmholtz Wave equation and the

Eikonal equation; such a Justification is presented in this

Appendix.

Consider the effect of the radiating sound

source in a medima which was at rest initially. When the

attention is confined to a specific band of approximately

constant frequency of the emitting source, the field can be

expressed using the solution of the Helmholtz Wave equation

(72 ± 2) = 0 ( 1 )

where T (Z) is the time-independent spatial part of the

wave function
235
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W(x) is the wave number defined as

R(x) = / c(x) 27/() (2.))

L, is the angular frequency of the source,

considered approximately constant for a specific

frequency band of the source

A(x) is the wavelength, characteristic length of the

medium

C(x) is the characteristic wave velocity of the

medium.

Equation 2 clearly shows that for a given value of L, the

wavelength? changes with the wave velocity c.

Equation 1 is a linear,elliptic, second

order partial differential equation, which with proper

boundary conditions represents the radiation problem in

acoustics.. For a radiating surface with an arbitrary shape &

distribution of , for example,a particle velocity on it, no

standard method can be applied; a recourse has to be made to

some numerical procedure. Assume a trial solution of the form

( A(A eP 0 (W3)
(x) = A(x) . eito S(x) 3

where A(x) is the amplitude function

kO is the standard wave number (=O/c 0 ), with c0 as

some standard wave velocity (constant)

S(x) is the phase function(real)
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When Eq. 3 is substituted in Eq. I and equated separately to

zero the real and imaginary parts, the following two coupled

differential equations result

v 2 A j 2 - 2  (VS)2 A 0 ( 4 )

7 V S.A 2  0 ( 5 )

No exact solutions are possible for these; however, an

excellent approximate solution can be obtained by the

Wentzel-Kramers-Brillouin (WKB) method. This is based on the

fact that in a slowly varying medium the wave amplitude

function A(x) will also be a slowly varying function; and

hence as a first approximation

2
2 A 0 (6)

Then Eq. 4 reduces to

( VS ) 2  n 2  (7

where n(x) = C (x) / 0 c / c(x) ( 8 )

is the generalized refractive index of the medium.

It is observed that Eq 7 is a differential equation of the

first order and second degree. In principle its solution can

be found, given the spatial variation of the refractive

index and the initial surface of constant S.
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S -'(ao

S= oc

Fig. AI. Constuction of the Neighbouring

Wavefront Surfaces

A surface of constant S forms an individual

wavefront, and a set of wavefronts is a family of such

surfaces having the values of the nondimensional quantity

OS (4q. 3) differing in increments of 2T7. Let

S oc

be a given initial wavefront. Its neighbouring surface

S o= C d

is constructed by going out along each normal a distance

doc / J grad S

and connecting the resulting terminal points (Fig. Al.l).
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Continuation of this process sets up successive surfaces

S constant

Now it is possible to integrate Eq. 7. The value of S(x) thus

obtained is then substituted in Ea. 5, and solved for the

amplitude function A(Z). The solution of Eq. 7,in general,

can be expressed as

grad S =n(r) ^(r) ( 9 )

where s(r) is a unit normal to the wavefront.

It is observed that in Eq. 9 r signifies the spatial

dependence on the three coordinates of the point, but does

not imply a particular choice of the Cartesian coordinates

only. The continuous curves that are everywhere parallel to

the unit vector s(r) are recognized to be the RAYS. These

rays represent the required propagational paths of the

disturbance signals.

Let s represent the arcual coordinate along

the ray representing the ray distance; then the above

relation can be expressed in a more suitable form as follows:

(d/ds) (n ) = (d/ds) (grad S)= 4 div(grad S)

= (1/n)(grad S) [div(grad S) , fromEq. 9

= (1/2n) V(grad S)2 = (1/2n)V (n 2 ) , from Eq. 7

= Vn ( 10)
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Given the spatial variation of the refractive index n at the
A

local point, and the initial direction 0 of the desired

ray, using Eq. 10 it is possible to make the successive

evaluation of the ray trajectory. The effects caused by

fluctuations in such physical veriables, for example, as

density, temperature, convective velocity, etc. can be

added to this basic form as and when required.

It is recalled that the basic form represen-

ted by Eq. 10 is based on the WKB approximation. Before its

use it is worthwhile to examine its validity and the

conditions imposed thereof. Taking for simplicity the one

dimensional case, the exact Eqs. 4 & 5 now take the form

[(d 2 '/dx2 ) + [n2 -(dS/dx) 2 k0 2 A = 0 ( 11

(d/dx) (dS/dx) A2 ] 0 ( 12 )

In the WKB approximation the use is made of the relation

dS/dx n (13)

then from Eq. 12

A(x) B [c(x)I (1)

where B = A(x 0 ) [c(x 0 ) is a constant.

The unknown exact derivative in Eq. 13 is now represented by

dS/dx n l + (x) 1 ( 15 )
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Substitution of Eqs. 14 & 15 into Eq. 11 gives

(i t /2) - (1/n2 )[- (1/8c2) (dc/dx)2

(1/4c) (d2c/dx2 )} (1/pO2) ( 16 )

In a slowly varying medium

i. the index of refraction deviates only slightly from

its mean value equal to unity, i.e.

n(x) 1 -D (x) , where )I<1-l

ii. (d2c/dx2 ) << (dc/dx) 2

Hence - (1/8) (1/c) (dc/dx')2], where x'= x 0 ( 17 )

It is noticed that (1/c) (dc/dx') represents the relative

change in the wave velocity in the distance of one local

wavelength.

Generalizing the results of Eq. 17 it can

be stated that the WKB approximation is good enough for a

medium wherein the medianum properties do not change appreciably

in a distance of one local wavelength.



Appendix 2

ERROR ESTIMATION IN THE MONTE CARLO METHOD

The numerical answer to a given problem by

the application of the Monte Carlo technique is obtained by

averaging and analyzing the many results of repetations of an

experiment on a high speed computer. Any single result is a

function of a sequence of random numbers that are employed

in that particular Monte Carlo run. It represents a random,

event, which is an event that has a chance of happening. A

numerical measure of this chance is given by its probability;

it is a number lying between 0 and 1, both inclusive, higher

values indicate greater chances.

PROBABILITY ESTIMATE

Suppose that a random variable X has a

finite mathematical expectation

E I X

242
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Its variance and standard deviation are given by

2 x E[ - E(X) 2  (2)

(3)
X

respectively. The probability of occurrence of an event

connected with this variable can be examined in the light of

Chebyshev's theorem which is stated as

"For any positive number h, there exists the

probability relation

P X- h 1/h 2  ( )

or equivalently

P [IX -L h fX 1 1 /h2 "

For example, it says that at least 3/4 of the total probability

is within 1 20- from the mean for any random variable. This

theorem guarantees -the lower bound;- but when the sample size

is large, which is the usual case with any Monte Carlo

calculation, it has been found that the stronger results

than those given by Chebyshev's theorem usually hold. A

common empirical rule ( Mosteller, 1961 ) indicates that

about 68 , 95 % and 99.7 % of the total probability values

of a random variable lie within +o-, +2 o- and +3c0- from the

mean. The numbers given for the emprical rule agree exactly

with those for the normal probability distribution.



ERROR ANALYSIS

Suppose that X1 , X2, X3, .... , Xn are the

n independent outcomes resulting from n different runs of the

Monte Carlo simulation of the above problem relating to the

random variable X with finite mathematical expectationt(Eq.l).

It is reasonable to represent the Monte Carlo estimate of

by

wx 1XI+W 22+ WX + . .W X
A w2 33 n n ( 6
M +W +iI -.... rM W 2 3 n

where Wi is a 'weighting factor', a quantity that represents,

in some sense, the length of the sequence of random numbers

used and the sample size Ni which gives the number of

independent trials in the ith run. The error involved in the

value A~LM given by the Monte Carlo method can then be

expressed as

The distribution of AL M is obtained from the 'Limit Theorems'

of the theory of probability. In the Monte Carlo method the

values of the sample size N, which are commonly employed, are

of the order of 10 3 - 106 and as a result it is possible to

consider A. to be distributed very nearly in accordance
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with the Gaussian law. Then using the 'Three - Sigma Rule',

where the error is known with the probability of 0.997,

Shreider (1964) has shown that the exact estimate of the

error S of the Monte Carlo method is given by

= I M -/( I3 D 2 [X / N 3cr / N ( 8 )

It shows that the accuracy of the Monte Carlo method depends

only on the sample size and the variance. Two ways of

reducing this error are seen to be

1. Increase in the sample size N

2. Change in the sampling technique to make the

variance D2 {Xj small; as stated earlier in

Chapter 3, methods such as Stratification,

Control Variates, Antithetic Variates, etc.

can be employed for this purpose.

The extent to which each of these alternatives to be employed

depends heavily on the relative cost of each for the particular

problem that is under investigation. This is examined in what

follows.

Efficiency of a Monte Carlo Technique

Suppose the Monte Carlo simulation of a

given problem, on average, involves mc number of computer

operations per trial with a computer time t. per operation;
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then using Eq. 8, for the desired accuracy S, the total

computer time required for a Monte Carlo calculation of

sample size N can be expressed as

To Nm c  9 mc 2 t / 2  9

Equation 9 clearly shows that, with all other factors

remaining same, to halve the error it is necessary to increase

the total computer time four times; quite often this becomes

impractical and the remedy lies in careful design of the way

in which the samples are collected and analyzed.

As is evident from Eq. 9 the efficiency of

a Monte Carlo technique is inversely proportional to the

product of the sampling variance and the amount of labour

expended in obtaining such an estimate; it is this product

that is under control of an analyst for a preassigned

desirable accuracy. A slight increase in the labour would be

permissible if it results in overwhelming decrease in the

sampling variance. The efficiency of method 2 relative to

method 1 is given by

21 2 = (mol / mc2 )  1 2 )

S .v21 2 1  ( 10 )

where 121 is the labour ratio

V2 1 is the variance ratio
21p
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The labour ratio 121 depends partly on the computing machinery

available and partly on the Monte Carlo method employed; whilst

the variance ratio v21 depends mainly on the complexity of

the particular problem that is under investigation and the

details of the technique employed.

Economics

Consider a case where the requirement is to

achieve a preassigned level of accuracy at a minimum cost.

The total cost of a Monte Carlo method is made up of the

following three parts

I. Cost of design of the experiment, this includes such

costs as

the development cost of the basic sampling

technique

an additional cost towards extra analysis

performed, if any, in an attempt to reduce

the sampling variance

II. Cost of programming

III. Computer machine cost.

The total cost s is given by

a = 1 + s2_ = 1 oT ( 11 )

where sI  is the combined cost of I & II

s2 is the cost of III
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oe is the factor of proportionality

T is the computer time for a sample of size N (Eq. 9

As is seen from Eqs. 9, 10 and 11 any attempt towards the

refinement of the technique is bound to alter both s1 and s2

the former through the cost of analysis whilst the latter

through the efficiency factor m2 2. This interdependency

makes it impossible to predict in advance the form of the

variations in the standard deviation - .

Elimination of T from Eqs. 9 and 11 gives
2

cc , = +1 2 ( 12 )
where (=9 mc

The condition of minium cost requires

(ds/ 1 ) l - -2  / s )  2 - (d / ds )  0

(13)
In fact the proportionality factoroc in Eq. 11 is different

for different sampling methods and thus is a function of s

The number of computer operations m is also different for

different sampling methods. Under the assumption that these

two variations more nearly balance each other, Eq. 13

reduces to a differential equation

(dc- / ds1 ) = - 1 / 2 - ( 4 )
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the solution of which gives the sampling plan - (Sl

Substitution of this value in Eq. 8 gives the required sample

size.

Probable Relative Error

Whenever a complicated problem is solved

with the aid of a computer it is always necessary to consider

the possibility of random error, this may result due to a

fault or a rounding-off procedure. Under such circumstances,

since the final result can only be regarded as reliable with

certain probability approaching unity, the error can hardly

be calculated from a theoretical formula.

Equation 6 above gives the Monte Carlo

estimate At of the variable X. The exact value AL (Eq. 1)

is seldom known. This makes it impossible to evaluate the

error c (Eq. 7) in practice. Since the Monte Carlo results

are the mathematical expectations of- someirandom quantities,

the following relation for the probable relative error, Sprob,

usually provides the order of the statistical error in the

Monte Carlo calculations.

-o (0.68 / E XI) . (D2X /I N) ( 1 )
prob

where E[XI is the expectation value of X (Eq. 1)

D2 X( is the variance of X (Eq. 2)

N is the sample size.
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A close observation of the variation in

the results with increasing sample size N furnishes an

additional information about the error. In the works of

Bouquet (1958) it was assumed that the deviation from the

exact value follows a normal distribution when N NO ' where

NO is the preassigned sample level; but Shreider (1964) has

observed that this type of approach has not been adequately

justified.



Appendix 3

A NOTE ON THE SELECTION OF RAY DIRECTION

The Monte Carlo method of random direction

selection, outlined in Chapter 3, is examined here in more

details first and is further compared with an alternative

method conceivable on pure geometric considerations.

MONTE CARLO METHOD

Hemispherical section of a unit sphere is

shown in Fig. A3.1. In the coordinate plane Xl-X2, point A

is selected at random such that it lies inside the circular

cross-section. Let B be its projection on the spherical

surface in X3 direction. Then the line joining the origin 0

to this point B provides the requisite direction for a ray.

The method is based on the principle of Rejection Technique.

In order to determine the efficiency of this method consider

the shaded area of Fig. A3.1. It is defined by the curve

251
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X3

X2

+1

X,

Fig. A3.1 Selection of Ray Direction Monte Carlo Method
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(i - x12 ) , -1 ~ Xl 1i
X2 = f(xi) = ( 1 )

0 , elsewhere

Suppose that a toint is chosen at random in the square

-1 X 1 1

-1 X2 1

such that its coordinates are, independently, uniformly

distributed in the interval (-1, 1). Such a point. defined by

11 - 2 R1

X2 = 1 - 2R2 ( 2 )

13 = 0

can be obtained by utilizing two random numbers RI and R2

that are distributed uniformly in the interval [0,1] . The

abscissa Xl of this point is acceptable as a sample value if

this point falls inside the graph of f(Xl), if not it is

rejected and a new set of random numbers is tried.

In order to evaluate the probability of this

point lying inside the shaded area of Fig. A3.1, consider its

first quadrant. Under the assumption that fR1 and R2 are

independent the probability of selecting a value of X1 in the

region X1 to X1 t A Xll is given by

(Xl) / (12)m . iA / (X)max

i. e. fr(xl . Axi
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Then the probability of obtaining a satisfactory Point at the

first trial, which is called the efficiency of the technique,

is given by

= Zr(xli) A xli  Lt r(xi) A xxii - Xli- 0 -

1 1

f f(xl) dXl = (1 X12) adxl - T/. ( 3 )
o 0

The probability that the Process will fail.(n - 1) times and

then succeed on the nth trial is given by

(1 - q )n-1

and the mathematical exmectation of n is given by

co

E n n(l - )n-1 _ 1 /= 4 /7 ( C )
n -1

It is nossible to prove that the distribution of the selected

point B (Fig. A3.1) using this method is uniform. The line

from 0 to B has as its directioh vector

DC(1,2,3) = (DC1, DC2, DC3)

S(00osC, cos j, cos) ( )

Using Eq. 7 of Chapter 3 the component DCI is rewritten as

DC1 = cos 1- 2 R2



Then R = sinoc / 2

X1= R cos ( 6 )

X2 R sine

In terms of the angles o< and e (Fig. A3.1), now, Eq. 5 is

rewritten as

D(1,2,3) = (cosc., sin< cos, cosoc sine) ( 7 )

Let P(x) be the probability of component x,

then

FP(c, e ) do de = P(Xl, X2) dXl dX2 = dXl dX2 /~

= R dR dO /2 - sin-c d< d6 / 1 JL

=4 /k 4 (8)

Equation 8 shows that the above Monte Carlo method for

selection of a ray direction provides an 'even distribution'

of directions in the sense of 'equally probable' directions.

ALTERNATIVE METHOD

An alternative method, based on purely

geometric considerations, is outlined by Krokstad (1968).

This method consists of introducing n planes, parallel to the

coordinate plane Xl - X2, between X3= 0 to X3 = 1. Angle i

and the corresponding radius Ri of the circle shown in

Fig. A3.2 are given by the following relations
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SX3

+1

-

0
XI.

.It o

Fig. A3.2 Selection of Ray Direction Geometrical Method
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21- 1 0

n

R, sinai ( i= 1,2,....n)

(9)
On the spherical surface the distance between iwo adjacent

circles is given by

b R /2n (10)

Let m be an integral number, representing the number of

points that are considered on the ith circle; it is defined

by

mi = IbT 1 /b (11)

where = 2 7L R.

The angle 8 shown in Fig. A3.2 is given by
90

, - 2 m ( j= l,2,....,mi) (12

The line from 0 to B has as its direction vector

DC(1,2,3) (DC1, DC2, DC3)

(sin fi cos i, sin i sin 6i,J, cos

(13)



In this method, the approximation of the

quantity li/b by an integer mi (Eq. 11ii) for different values

of i, is seen to lead to a nonuniform distribution of the

selected points; and as a consequence there appears an

inherent degree of unevenness in the distribution of the

selected directions obtained by this method.



Appendix 4

RECTANGULAR ROOM PROBLEM MONTE

CARLO PROGRAMME

This appendix gives in full details the

results of the application of the proposed Monte Carlo

technique (Chapter 3) to a rectangular boundary problem

that is under investigation (Chapter 5). Included herein

is a complete listing of the programme that was used in

these calculations on the CDC 6400 of the Computing Center

of the University of Virginia. The printout results

accompanying this listing correspond to the pressure

values shown in Figs. 13.1 and 56.
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56 3.5jc, zj i7 2.uJJbSI3lL.-0o 58 Z.751234.46E-06 59 1.6879i877E-0b 60 2.322L14'7E-06
oJ. b 2 3 .48259biaL-3t 63 1.81'4'028E-06 6. 1.9336185CE-06 b5 1.73212003E-06

b?3 .1~,u3 6 2.92u45504L-00 be 9.2.9jI2566E-d7 69 3.616190bbE-06 To 2.9579035WE-Ob
- ~ 2le±,:-, 7 7.47047091E-07 73 1.'.3393?SOE-06 7'. 8.?5213085E-0? 75 1.4.13991711E-06 . a

77 §,Ic_3_LZ__ . !F?'I035E-U#J_ 79 j.09?'.'02306 Be L2u8---0
1,(A4 VALUL 1J dr, UJSEJFRF(.lftCLJAI 21372689

* ~~,l)iKALZD. PK4cSSU.(E VALUES IN THE NONOI"tENSIONAL FORMI
1 .O.I.~I 2 2.b5'.I~bbIj-U5 3 9.58.393962E-09 4. 2.0054.2533L-08 5 3.28?753'.8E-09
6 4.4.J 0J-aa's I 4..'.3s-b01Ot.-0d a 5.95314264.E-08 9 '..8524501E-0S 19 ?.3S03518E-08

11 I.1LZi- ~ 1 1.253'.II20L-07 13 7.01659758L-08 14 1.279?16'.6E-OF Is 2.'.21.9301E-01
1~2' ~4I.F 17 3.26879744L.-. 1a '..5537'.T??E-07 19 3.79856395E-Q? 20 6.02985336E-0?



6 L

el .Js'ej.J 22 6.0?3JI446fE-OF 23 6.5e,928606E-07 28, S.?6910633E-0? 29 q.q'#8OS0056of-or CI

* 40 8~J1.JU 21 9.92030562E0O? 28 6.3904405?E-0? 29 ?.1523S288E-07 30 I.1oyT7109?E-O6

SI36~I~~ 2 1.15540368L-06 33 9.6154J952E-O? 34. 9.59839076E-G? 35 l.036316bDE-06/

36 1. I.u4 ifu -,1* 3. 9.632124,2&E-47 38 7.55'.962S0E-D? 39 _, 2.ZZ69G?94E-O6 '.0 0479?24748E0?

0 1 1867..4 42 i.?e53?7b?&.-O6 43 9.5'.298835E-06 4 4 1.60254652E-06 4S5 2.4223129 FE 6

6 ? .0,401L0 _ 0 2,657I 9 t.5576873E-06 ___S0 2.0234606E-06

it ~ 4~.~J 52 1.33153716E-06 53 1.45983302E-06 5'. 2.6259?434E-06 55 1.99'.34825E-06

* 0l5~1-8 5? Z.?54913biE-6 so 2.O'.91L.8.E06 59 1.908922biE-06 60 3.7S616325E06*

it b.~e~k. 2 Z.i3689514-06 63 1.9?3639?8E-Ob 64, 2.??89ML-k06 65 2.90309bL9E-06

0 l.~iLU ? -b.53'i1bb610k05 bO 1.31S3uSZ0E-06 69 2.91635Z63CE06 ?a 1*6927O221C-06

* 1 I I.25'19224E-06p 13 I.L'.799409E-06 71# 1 1?6I'.',E-06 ?5 2.533'.Z9SOE-Ob

IR1AN VALIJL T5j o. JSc~j FOI FURTAIk CALCJLATIONS 37306441
*.J.tiAL11c 0 P4E~iVKL VALUES IN THE NONOINWSIONIL FORM

~ .j47,-1 2 3.04955bLE-03 3 1.4r032993E-O8 8, 1.34.911221E-08 5 2.04.29494.3E-06

6 3.4i6Asl34-J 7 2*981132TZE-00 a S.JJ36 40E-Q@ '9 4944.631930E-46 to 7.96',127Z6E-08

a It 8.4~.4464J b 15 2 I1.5945?33.6-07 03 6629BIt69E-08 14b ?,82084029'E,08 15 24 024Y41429-0?

t 2 a c. , ~e ,) -. &1 1? 1.59?14193E-0? -. 18 2,u~2i.7'?A..2.0B90 0 -. 2.1450?358E-O? -

eI 5.tj4,e?$4._-uf 22 6.600351GIL-01 23 1.01201L969E-Or 214 5.34669454Ek0? 25 5.9928S?61E-07

0 40 61 ... 2... 21 b.40b6jJ2?6L07? 28 6.263597L-07 29 1.02600357E-06 30 1.2b386899E-06

£11i &7S1.J 32 L.16307964E-U6 33 ?.?43d?5?5E-0?r J4 1.10013323E-06 3S .93650

3, Led'1L,Ji. J3 37 1-.'611657SE-Ou 4.8 L.1992?'23L-Ob 39 1.52677716E-06 8,0 1.07244391E-06

0 41 1. 3i.42 1.07392620E-06 43 9.402'.8539E-Or 94 1.156426076-06 #*5 1.1093543LE686

,1 52 1.1625W0i35h-06 53 3.3555786LE-06 5'. 2.67?30335E-06 55 1.18522344E-06

a ,o 73 ',3J 57 d.2?b/040dL-06 s8 2.4UJ5808BE-06 59 2.041?3879E-@6 60 2.78301z48E-Ob

b1L ,13,/. 62 5.1008699aE-07 63 2.16?b1496E-06 64. 2.50481099E-06 b5 2.39515114E-06

bi 2.21 rl'.: -Qb 6? 1.24041504iE-06 68 2.156105656-06.. 69 L.f7?61664E-Ob To 5.18Y13320E-B?

* 71 1.7u72?/1i.-.jo .12 1.4238574i?L-C6 F3 1.1'.?3,)729E-Ob . 4 2.06990951E-06 ?5 1.36852899E-06

1.(A11 VALUt 13 J_ UJaLJ FOR FJ. TAE'R GALLULATIONS 142623145

& ;jiJ-MAu.LZe. 8-.(ESSUME VALUES IN THE NONCIMENSIONAL FORM

I 3.324:.i,7,j:-1u 2 3.45?00739E-09 3 8.0456791SE-89 4 2 140?8492608a 5 3.26LS54LCE-06

o J..2?j23..-J __ 7 S.1j3k88373E-05 8 15.r74.98593E-05 9 .2.68139721E-08 10 ?.00262LSOE-00

a 11 b.87o1.,1.._-.d8 12 7.7246942OL-Ud 13 1.4197,2676-07 ' 1.'.9813432E-D? 1s 1.75791906E-07

16.. ~ JiE lLI..e 20685258-01 -10 .,2 84b~L 1 63?91E0..2t... 98512
3 9E-0?

21 . .. a;..i~-41 42 5.61415571LL07 23 5.909893b11.0? 24 9.671401516-07 25 5.67682903E-D7

?6 . .4L11Pif45 -jf z. 2 9.14'.166836-OF 28 6.36836436E-0? 29 1.5064Z951E-06 30 1.04921632E-06

31 1.174hi~-l, 32 i.34101?01L-06 33 1.0088405E-06 34 9.168507416-07 35 14799E0

J0 J.183Lb~ij:-v7 31 1.642~14703E-06 35 1.43d8O495E-06 39 1.18271405E-06 4,0 9.16884031E-07l

4L1 %.23e/U 2 L.42i26122L-O* 43 1.147305576-06 44 L.7545664'.L-06 8,5 1.2926102SE-06

_! 14 4,lSUI; IjF I, 47 115 126.eL - 06 4 8 1.95123236E-0 I 49 23?04766E-06 SO - .006038SOE-06 .

51 2.ib4I-i ie .38774631E-Ob 53 3.446764606-06 54 2.500991806-06 55 2.35790983E-06

5 o 1 . i0o121,SX- S 5? s 1.93134606E-06 58 2.25'.70091E-Ob 59 .2.Z59287.916-06 b0 1.83092253E-0?

61 1.1 lJ1S1Lf-Ju 62 !P.420b0417L-DI 63 2.Ij0..'254SE-Ob 64 3.5221'.9i5E-06 65 3.197137f#ZL-06

bo 9LL.7 .a? Z.463476301-07 be 4.862b8472E-07 69 2..004.64124E-06 70 1.5LO?1392E-06

1 . 41~J 72 -2.if3 8021 2E- a 73 2.Z42715?46-06 74 -3.?I'3133F06-0? 75 2.69257079E-06
70 1_j, 17 If .34590342E-0o . 78_.IB50O8LL606 19 i.9535.0....1L......23762544E-07

1.(AI VALUE TJ UL J. LJ P0.1 FUKrNLk LALCULATIUNi 61 '30d49
J UJYI1ALIZE.3 PRESSUKE VALUES IN 7NE kNONOIHENSIONAL FORM

1 .3~51~1, 2 !P.18?2b125E-O9 3 7.35593576E-09 4 1.389S9236E-08 5 2.aQ243272E-08

I 3.b4JUOSOStL-0d a 4.83506289E-08 9 6.29392085t.-08 10 7.9117a93SE-08

11 4.dd~, j 12 6.28b13576L-06 13 8.51'3E8 14 .1.9367979BE-07 .15 Z.582588951-C7

17 4.5Sb'3'.85E-01 18 4.6299332?E:0L.. 19I .... ,12b6?4IIE-O? 29 6.S55880249-07

21 6. ,1 -u 5.471YI96Ij8E0? 23 7.3430356BE-07 24 7.261681701-07 25 1.0A.136206E-06

2o .. aI-? - 2? 6.06jsquIE-ul 28 9.i8236005E-07 29 9.59202622E-07 30 9.6234i395E-07

i1 343e.?4~? S 1.3182ob27E-06 33 1.510092?77-06 34. 1.05035792E-06 i5 L.53787265E-06

36 37 1.544 922*-E-36 id 1.38203706E-06 39 1.54786942E-06 .1.80 1.7618261?E606

40 .2. k.1 J.. I3'tL.6.o 2 .3'ijs112b4L-6 43 1.Z7I19?161-06 44 9.4268L259E-D7 '.5 9.661789646-0?

c.'3u?~i n 1.922364E-0. 48 2.09173606E-06 49 .476200996-06 so Z.40885316E06.~

51 2.b771....-Uo i2 3.29 66697E-06 53 1.r54633381-06 54 3.54406002E-06 55 1.55627696E-06

O o 1. ,.2.-a 51 .7120EO 50 1.494785301-06 . 59 2.31163832E-06 fie 4.20977593E-06

ol L.S7L,4SJ.,-.i1 bz Z.L557995iE-3o b3 2.6265423SE-06 64 3.074e55036-06 65 2.6F628886E-06

$3- 8.k8l?4417-07 b?6 3.262551501-06 68 L.Z1?84162E-06 69 1.73271097-06 T0 1.67172895E-Ob

11 -1.577 23iz:i y2 1.1990L666E-0t, 73 3.062633 03E-06 74. 1.28983853E-06 75 -1.2581ZL35Lk06 .

Y6. L.vL51L34.4c.. . 71-4aJ8- 9 . ~ . .. iQ~3~8 7 1.626615Z01-06 8O 6.?32400?86-0?



I-P.AN. VALUL. TJ .i JbEJ FOA FURTHER CALCULATIONS 3'.272'.S
I'J~AAL..J Pttk.5,UKL VALUES IN T.4E NOi4OlMNSIONAL FORM

I 1.z*6LIajf:-G 2 2.6123T76bE-09 3 6.259Z5861L-09 4 1.33294.20E-08 9 3.'.'.'.7162ZE-06S
a ~ 9.~ii-8 7 b.'.1592'.67L-06 a 5.72010870E-08 9 5.4.0291088E-08 LO 5#703959&E8-06

IL L.iov~-, 2 8.9105688'.E-04 13 1.00062376E-07 It. L.72311378E-07 Is 2.2065091LE-07
I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 j Z4 7E' 0 447D4-. --- 21 4t q bl?66 39'.6E- 7 3.35586910E-0?

lel .. i17.., 22 6.0?'.7896'.E-gl 2.3 b.921536??E-C? 2'. 5.597J12'.'.-07 29 8.2Z06325'.E-0?
2. LIii'-3 a? 9.iZ079021L-O7 20 1.0556'.924L-06 29 9.6116'.6'.E-07 30 9,061*33529E-07
31. I.L.bje~dllu SZ L.2725E-Ob 33 9.97435iE-07 3'. 1.119?29'.3E-06 39 L.3939i'.90E-06
So 3.6o.15314w-o? 17 1.0'.17923?E-06 38 1.3'.552390E-06 39 W.3291M6E-07 410 1.3'.382997E-06

,a '. 9.95132.? '. 2 1.7544d1214E-06 4.3 9.21979'.5?E-O7 44. L.a35ip06IE-06 its l.?3650690E-06
'___1. 7.?4 --~J ---- 1.2b658391E-06 '.8 a.tO208DE - - 49d 252145B798E-06 ___ l9..__ 2.DL52990?E-06

51 1.-*l-., 2 .1~??O-i6 5s 2.6227 350E0 54. 2:91'.6526?E-Ob 9S 1.59038324.E-06
56 2.1~1j337jiO0, S7 i.6b636464'E:Ob 50 1.6558'.377E-06 99 2.73663012E-07 60 2.65618099E-06
oL .1I3:-. 62 1.88?7302E-06 63 1.29116695E-06 64. 1.70609269E-06 69 2.6?222968E-06
66 8.31JJZG-0, 67 1.'.62td6ME-06 66 - .8?69'.596E-07 69 1.17168230E-Ob 7o 1.509755Z5E-06

* 71 6. ...- ? 72 2.363654.3&E-06 73 .1.8653L936E-Ob 7'. 2.0174.7252E-06 79 I.21702365t.-D?
7 .6124f ei-6 17 -.03J050Q2E-D6 70 14803js.- 6 r9 .7 82E-LJ 19608-6__

Lb(A4 4A .UL UJ al J.L FOi FJikfHCK CALCULATIONS 2462b66
wi 00'46tZELJ PtESjURL VALUES IN THE NONDIMENSIONAL FORM

I 6.6J313e?5-11 2 5.4.7390196E-09 3 .7.53893677E-89 A .132162g$E-08 5 2.'.098835.E.08
b e.bk Lw r .4.29'.'.'LUE-08 8 6.'.50909P9IE-08 9 7.3088174.9E-08 I@ 6.92512087E-08

* l L~ 2 7.11251865E-08 13 1.16'.26814.E-07 L4. 1.215395'.5E-07 19 2.26'.77519E-07
e? 2.~7-9G ?9& Q U _ Q509TO9E- #15'0590'.0E-07 __

21 71..? 22 b.4741'5'jlEO? 23 5.2783'.292E07y 2'. 7.802?7585E-07 25 8.382'.9556E-07
* 26 7.7vt.I-.o7..uf Z. ? 6.65ZZ6759E-0? 28 6.05519024.E-G? 29 1.32363697E-06 30 6.9'.158687007F

J1 I.UIe7..-.Jfj . 32 9.92894.546E-07 33 1.172716'.IE-06 3'. 9.995?2Z66E-07 3S 7.94.97951CE-OF
3 6 1. ~.ei~ _37, 7.33b23611E-07 38 8.14J2'867E-OF 39 1.75255313E-06 Al r.355.6533E-OF

* 4.1 9.83A1- . 1.5t"136386L-06 4.3 L.70155569E.06 44' L.7336082?E-06 '.5 L.661'.5622E-06
%7*b679Z W42E0 49 10,30jE-0 5. 1.01?4 - -

S? 1.42:.i 5 .51dJ7756E-36 53 . .a9r'521b8E-Gb 5'. 2.a65SO163E-06 55 2.03995575E-Ob
0 5o L,1.' jP-(., tP7 6.72717589E-07 50 1.644'1'16E06 59 1.6600'.500E-06 60 2.2704.3763E-06

61 0 . 2 8.810208102L-07 .163 2.44L.5f8?2E-O? 6'. 2.19715225L-06 65 1.7220670SE-06
.66 1.6'5i3t'41- 67 b. 2.652?7.bOE-06 be 6 -1.00286'.3ft-06 -- 69 .. 2.22'885?E-06 Y0 2.745920556E-06

0 r1 .)' 3i53j 70c 72 I.877183b5L-0o 73 4..0262413J3E-06 7'. 2.25106299E-Ob 79 -Y.82238081E-07,
16 130fliU3 77 -3.flh1740.(5O d SOM9Lw? 7 464§4-? 6.73365161E07 __

IkAN WALUc. U ic J..c. j 7 04 FUt(Trnc.F CALC.ULATIONS 358993

0 JJ-<MAiIZED PRESSURL VALULS IN THE NONDINENSXONAL FORMIA.1'9125E .029:

* I1 ?.0J uG,;-d 12 I.1'.2124.1E-O? 1s 1.0d5889E-O? IA 1.46917663E-07 19 20'IZ'.E0
_Q224LQ a 48919kQ 19 2.9~9'.7E:97Q 20 A,77'.62110E-07

21 1 -. 2 ?.7'.179165E-07 23 1.OO6r2t63E-06 2'. 6.5710800'.E-07 29 5.76796232E-07
'6 * 2 7.'.4 . 1Sj.- JI 27 .03d~u357E-06 28 1.229.6.8?E-16 .. 29 1.00122906L-06 30 I.1'.?66363E-Ob
31 32 a.756979'.OL-0? 33 1.09861525L-06 3'. 1.A2593'.06E-Ob 39 158?2-0

* 3i 4.ois3 U 7 l.1199915'5E-06 38 L.23223372E-06 39 .1.7?703'.63E-06 40 1 88b1324.7E-Gfi
9 .1 4. .bIu/(o '2 1.10D73Z61L-06 '.3 1.41340607t.-06 44A 1.9614.2356E-06 '.9 1.287336?7E-Ob

4 2icLt.6 47iS81 O 48 I15 ?0 2 E - 06 '.9 Z . 72 " 9 q-1 E - 6 s0 -I. 587 60 78 E - 0 6._____
51 2.5..7-jei,3c Go i2 2.'.774063SE-06 53 1.925751'.6E-06 9'. 2.39859893E-06 55 2.1271Z766E-06

* 56 1.d53j'.7' 1jo 57 2.3154.1533E-06 58 2.36063727E-06 59 L.43727'.91E-06 60 1.6936756SE-06
b1 1.30714rZ E.. o o2 2.5791'.b'.E-Ob 63 7.6Z579915E-07 6'. 9.052031i1E-0? 69 2.2644A1984.E-06
bb k. .U 6jLijo bf 67 .bd1227L'3E-b 68 2.73562990E-06 69 .3.33003073E-O? 70 6.181'.7289E-07
?I. '.?..733 -uk 72 1.3556244'9E-06 73 9.6066832SE-47 F'. 1.52095935E-a6 Y9 9.'.63070?9E-0?

AiU- i tI. ,i J , i5 -419. 6794755 L 0 L- Q 2--1 0? .j E -06 79 -7. 30U598a 95 5 6 af-- ,1355?178E-D? ____

I.xAf1 WALUL tU .c. U.~r.J FOA FU,(THE.( CALCULATIONS 8312929
i-,f(mA-IJPRSURL VALUES IN THE ;4ONOIMENSIONAL FORM

I 9.d565e3c-1 2 6.42955720E-09 3 '..6'.08125E09 '. 2.71577069E-08 9 2.?6.A543?E-08
u 3:ool1Sjo..E-J - I' J.2064U'.77E-06 a 2.8696'3845E-08 9 3.56531086E-06 10 S.25335059E-08

1i 7 4.34.,'JIjc-.d 12 7.5J75813?k-.8 13L 7.OBZ56'.73E-08 1'. 1.0938'.002E-07 1S 1.388732LIE-07 '?
I,, 9.'.-l~~9(8 L E0 - _4_________-7 0

21 5.i.oc.. 22 5.15112711E OF 23 8.3255 OV3E r7 2'. 6.914S52294L0? 2 .053-07
S 2 7.,jutj33,1LJ? _r 2? .7659b32eU0 28 I.1J350187.E-J6 29 b.73627?95E>-O7 30 L.033a1992E-06

31 le 3j..~7 J 1.059i52526E-06 33 I..6222081E06b 3'. 8.735'.9?0E-07 35 L.110127E-06
3. I.olro 3 6.eb2'.'22E-O7 38 1.237312'.6E-06 39 L.3060148?E-06 '.8 I.336486LE-06
'. b.302Z565,,.-dof '42 1.?0308'.90L-06 4.3 1.2141232?E-06 '.4 1.0708'.20LE-06 '.9 1.05055'.8E-06
4i 4.j*.-a . 2.1±8o?611E-f66 4.0 L.319x0692E-0b '.9 L.9b8022'.21-06 so 1.0829132?E-06



41 1. Y7jxztj1 ?E-jb U~ Z.094643liDE-86 93 2. 30 14'.64E-06 94 1.0999893$E-06 99 2.8?942717E-06
* S6 2.S362it.65 oo 5? L.Z30753'.0EC06 5 2#362O109SE-06 99 *.4172?964fC08 60 I.t7291193E@S6
Ct. . kjtuo b2 2.460.33S16L-06 b3 L.74802595E-Ob 64 L.04.9213STE-06 69 1.ei?31841E-06

66 1.07W ?ag.-06 67 L.6581259ZE-06 68 1.725174?$E-06 69 *.42bi0392E-G7 T6 4.412944UE-S7
* 7 3.12J.U93'eh- (AG r 2.34108289E-06 ?3 1.*409303E-06 ?4 *1.L52?3349E-06 T9 1.685?91b1E-6

Ii ToL~~8~EQ 76 .2219ZO641E-A7 ?9 2.67i8O838E-G7 81 -2 ZEMZ 3KiIQ?
I0.AN VALUE T3 siE USE3) FORtFURTNER CALCUJLATIONS 1433345
* VAR~IANCE AND DEVIATION ANALYSIS

TLINE INJ:X tMAN VARIANCE .DEVIATION INEAN)#(DEVIATION) (MEAN)-(D(WIA1irom

I 1.9102M'iE-10 2.66i50199E-20 L.631104.53E-10 J.5'.262544iE-LO 2.80619376SE-1I
* 2. 4..c(idrJi.L-J9 I.M6b6336E-LS 1.3n6436&ZE-09 5.j457±416E-09 2.67281#053E-99

3 'llsvZLG 1.O9853506E-17 3.31'.4155BE-09 1.3L063588E-08 6.47?S2765E-09
4 1.bbl14lZ3L-d Z.J984d?39E-17 4.S$0925CiE-09 Z.126233SE8 L.21OU'.6TE-06

*5 3.UoT5FI4E-08 3.82071.237E-L? 6.i8121539E-09 3.7448276SE-08 Z.SO5054'60E-08
* 6 J.46i7u4?5E-Q 5.38073295E-l7 7.345347195E!i..4.1.1 95E-OL.....8 t.2824 96E-08

7 4.4,.j71LE-08 1.50i?86E-16 1.24614.594E-08 5.TO4Z5304'E-08 3.20F96117E-0G

0 S6 5.3J?134olE-Od 9.22805994.E-17 -9.bO62?91?E-09 6.237762$2E-08 4.37650649E-08
6 4.b%'Y'IJJiL-Ub L.6.'IbOb26E-16 1.356ZZ13hE-08 6.0321439i6E-08 3.2596937OE-OS

1o 7.?deJ' 3oJLkO6 4.i26163210E-16 2.Ob434'.86E-0S 9.284.98406E-08 5.15628833E-08
Lt 1± ,.19q,35,128E-08 4.5113?'.56E-L6 2.1,239J9966E-08 8 .32235094E-06 4.074.35162E-06

13 3.'4lAIUL-01 4.99G41533E-to 2.2339Z315E-06 L.16755355E-07 7.20768797C-iO
*14 &.3dd'i6)45L-0? 1.ti7k9t,74L-15 3.996o19.'tE-08 i ?8865253E-07 9.6932593LE-08

15 1.6'ib5WJE-07 1.73J414±5E-15 4.IbJ.2?oIE-d8 2:36?9.915?E-07? 1.53530916E-Of
1b 2.3o~b9943L-0? Z.6218r84.3E-L5 5.12035978E-08 2.87973541E-07 1.8556634SE-07
I? 3.0)u23u4)0L-0? f.39136218E1L5 8.5973it31?E-08 3.86203521E-07 2.1425?'.58E-07

19 . .b4.j46L10 1.JL48502LE-14 1.1466jUH8-G7 5.610J73356E-07 3.51?39520E-67

*6 . ;. .36.~lb3-0F 1.496594O4E-1'. 1.223353b0E-OT 6#26?33009E-O? 3.82062289E-07
21 5.F1c51..12JE-9? ?.39?569L0E-15 8.60091222E-08 b.668522'3E07 4.9b506998E-0?

. -22 6.b14S55dhL-0? 1.0098?7'8dc14 .I049Z85ElT 7.62428ZF5E-07 S.61'.'2904f.07
23 . ?.Ldodd94cO7 . 2.44.802602E-14 1.564J6689E-07 8.65344583E-Q7 5.52421Z04E07?

t'.... 1 p7L4LOE-OL jLJ137Z9E-i% A,3 l3Qh * 3 5 t 3.6 4?852E07________________
25 .1e11~0 4.3361530bE-L4 2.048234.316E-07 .00O~9b563flE-f6 So9318?6T0L-0?
26Z .L16/b0 1.5 9 6 9 JO0 9 L-l

4  L.2b4430'tS-07 9.27'.68720E-07 i.?4#5?*630E-O7
2? g.6-,J61537E-O? Z.34254755tE-i4 i.53053832E-O7 1.02211537E-06 7.16007705E07?

2b .12Ub/*5E-0? 5.3305724BE-14 2.3088u3.16E-OF 1.14350794E-06 .6.C1?4?293E-0? _

29 9.561510E)E-J? 6.13t67902E-14 . 2.47?6357?E-C7 1.23594468E-06 7.4041752SE-07
3J1 i l.. O 6.5J5LQ .- 2.51 f4?eLEU2 .6Q5o2t E-0?J.,g145143606....j.91 1933E-1t

*31 1.0i5Lj2L-;jb 7.53?b3835t-L4 2.799651524E-D? 1.376416d5L-06 8.1656119tE-O?
- 2 LIu4

5
c237L-06 2.8?Gb5B45E-14 1.694301?bE-07 i.2?30i255E-06 9.34152195E-07

33 1.1Z4374J2E-06 4.68OLL469E-14 2.16333416E-01 1.3457074'.E-06 9.13040608E-07
- .34 . .0;441L.3L-

0 6  2.63130Z~1E-L4 I.62Z12835E-ilF 1.2Z0024S2E-06 8.95595546E-07
35 1.Zjo~t.??E-06 1.0079183U-13 *.3.0?477331E-0? 1.61354.005E-06 9.?8555'.52E-O?

____ 1. ltbdJf-Qb____.. 03Eo91933E-13 .3. 220L231807..±,A 9?006dE-06 ____ .556?64E-07_______-
37 I. Cifl'3..9E-06 8.53111310E-'. 2.9ZOO0693E-O7 1.?I48E0 .69853496E-0?

-J38 1. 1,4343SLE-Ob 5.Iii?4345FE-14 2.24442299E-07 1.37938561E-06 9.30501009E-07
39 1.471 d673L-0b 1.33394?23E-13 3.65232'SLE-O7 I.84482116E-06 1.11435630E-06
40 1.35e45506C-36 1.73464834E-13 4.16419056E-07 1.?6887412E-06 9.3603599DE-O7

'141 1.11iJ51S~eL-Ub 2.5?3305E5-1S . 6.0?7?424E07? 1.936792o4E-06 .6.92Z37?93E-07

4 . -JI-O____b72a~% 2.59273104e-7....J.9463448E-gb ... J.2?608628EO06
43 1.4225.3elE-06 2.153bJ21?E-13 4.640?24Z6E-07 L.91861270E-06 9.8846?84?E-OF
44 1.651'36'9kj-IJ6 1.3b'.6163EL3 3.69Q31295E-07 2.02189i2SE-06 1.28202870E-Ob
45 L.. ,5Id.1.,4LI0b 1.45b4~4.t-1 4.411.G3493E-u? L.82256.59OtL-06 9.39b2tbglbk.-O7

4 .i3i3t-o 1.?8leb863E-i3 4.2?050783E-01 2.1153t986E-Ob l.2?120830E-06
4? I.574.oL6.

6  
Z.I31933?62E:-13 4.b81335E-0? 2.02264862E-06 1.06653S95E:U6

40 j .)jJltl1J51L-ub __ .8lU852't80E-13 5.2995554SE-07 ___.3865-06 -0.N

49 14L.3GS L-ob Z.j,1h954766-13 4.49105195E-07 2.39113616E-06 L.493525?E-06 .
to5b Z.oZb538L-36i 2.5471?5DE-1S 5.C4749i96E-Q7 2.5309151?E-Q6 1.521416?SE-06

51 2.u de.3?E-Ob 3.022b6262E-13 5.4980565BE-01 2.5?Itt?613E-06 1.47226i.82E-06
5 .4.Je4ZL-u6 4..?079902bE-1J b-db19h2E-O? 3.04.94112CE-06 1.6?IISZE-06

s.i .,~dj~ 4.304.55b15E-13 6 .56091316E-0? 2.91364914(-06 1.6014665LE-Ob
54 *. 1. . j... 2.1687692E-06



056 Z.L*/ll?5t.-Gb 8.51S5800OE-13 9.2Z6Ce6'.8E-O? 2.97O0.201&OE-06 I., 2460a31&E-0651 1.0i24uSb5L-Ob 4.0172192?E-13 6.33815.3?3E-D7 Z.56902102E-06 1.3O13902SE-0s58 2 .1S'iS1S 3 2L-O6 1.SZG51704E-13 3.899J8077E-O7 256151Eo 1.7465?6%E-06
5i .oei2v 6.7CLDOMPL.3 S.1914L55'.E-Q7 2.48139i07E-06 8.430979b6E-07_______6G s 4 4 -Qb 1.Z59 1165 E- 1 1. 122 9699E-Gb ___ .j5 1869Z96E-Ok - I.7i,49898j-96-______61 1 17t-6 1.61837u85E-13 4.0 289000E-01 2.3326615ZE-06 1.4.9808192E-0662 1., fSS6QaJ3L-Jb 8.06(,5101LE-1S 8.9780343?E-C? 2.8753Ls34?E-06 1.0827?659E-D6b3 1.tddo1IIJ2E-D6 4l..2i9O5?8ilj 6.811612.6t-G7 2.S75kfubGE-0b 1*00095011E-06

64 .4 6a1- 6.80646Z46E-.3 8.250128?BE-07 2.930636'.9E-06 1.28061073E-06a 65 Z~:2JeiLO 3.91925565E-L3 b.264I39603E-07 295cOG4P219t-O 1.6159b299E-06

67 1.b214Z4?t-Db 1.Cb4767b9E-12 1.03187581E 06 2.6461005LE-06 S.6234889H-U?bi l.Z..JL15I4L-Ob 9.9a1Gd'.(OL-13 9.93604'.1T6E-Q? 2.23b2357ZL-06 2.44'14136SE-0?
69 .01l73IJ5L-U6 8.6124048LE-L4 9.28030J431E-07 2.74376OIoU-06 S.8770oi4?E-O7

1.5~O~57J-U6 .9466?OO-1J .3344Z679E-O? 2.354'4O38E-06... 6s531EO
?I 1.04J *Eat-06 1.03'.61489SE-12 1.OI7IID2IE-Ob 2.75251M~E-06 7.L8I9656SE-0?

?3 1.611bj1,PIC-6 1.335669'4bE-iZ i.i55?98L9E-06 2." 139.9?6E-O6 5.356033?6E-Q??4 7' L.eIls5597c-a6 6.136674.40E-13 7.6336928rE-C? 2.002'.2526E-Jb 4.35666681E-O?r5 1.4?9119zIE-12 1.21619048E-06 2.33813816E-Ob -9.'.24Z808?E-0876 1.3jOb14,0OE-O36 8.31.O754L-J.J 9.118050BE-07 2.246429OLE-06 .4.2'.79799?E-Q?F? 1.(.66630--b 5.b2'.5424i5E-13 7.'.g969496E-Op 1.83451047E-0Qe S.34631476E-o?

?9 1.4j2>3A.135t-b 1.221179UL-12 1.1
05 0

7001Lt-06 2.41011105E-06 1.999710'.IE-07do 6 .QOei6Irj7M-j -5.93096LjSbE-135 7.fI'0164i9E-87 1.25869573E-06, -Z.S1961579E-O?

10



IB

a O/?J/?Z2 UNIV. OF VI(GINIA iCOP 3.3 JAN 24,7Z SUm 288

1.37.,iS.OI NTLAC,1t 25 2000CNI200. THAMEDAR 8
- I.J7.,2. J Jj46A4 - ----------

14.$.55.kJ.

I3.S8.35.Lu
p *J*$.J$. IFL - uJ j40 CP 301.b692 SLC.

10*0__3. PP 004.404 SEC.
LJ.3d.04. 10 J00.370 SEC.

* 1441 *-O

1 3J.4L.25.10 OJi.2I SEC.

e HUNTE20 //// NO OF LIST //// 0000595 LINES

e

a

e

IV, -.soo

6p 
______________

................



Appendix 5

RECTANGULAR ROOM PROBLEM NORMAL

NODE PROGRAME

This appendix gives in full details the

results of the application of the Normal Mode solution

technique (Chapter 6) to a rectangular boundary problem

that is under investigation (Chapter 5).Included herein

is a complete listing of the programm=e that was used in

these calculations on the CDC 6400 of the Computing Center

of the University of Virginia. The printout results

accompanying this listing correspond to the pressure

values shown in Fig. 56.
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Appendix 6

MONTE CARLO APPLICATIONS TO ACOUSTICAL FIELDS

A MORE GENERAL PROBLEM

The problem of investigation of the

transient acoustical field, due to a monopole sound source,

inside a cylindrical duct, considered in Chapter 8 represents

a particular case of a more general problem in acoustics. In

this appendix is presented an outline of a more general

Monte Carlo flow diagram (Fig. A6.1) developed for investi-

gation of an acoustical field inside a nonrectangular

boundary, due to a distribution of sound sources. For

convenience of discussion, the programme is subdivided under

the following five major headings :

I. Input and Initiation

II. Source Routine

III. Ray Tube Initial Specification Routine

IV. Ray Tube Processing Routine

V. Analysis Routine
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INPUT 0/TA

P(I,7) = 0
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NRC = 0

B
- r

RA J TUBE INITIAL SPECIFICATION
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RA TU3BE PROC s5 N OUTIN
YES PRINTNPR =0

NC I P(_1,3 FOR ALL I P

NSA N

N FA LY SLS ROUTI N-
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Fig. A6.1 Acoustical Field Inside a Curved Boundary

General Monte Carlo Programme
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The progressive, step by step, processing in the simulation

is presented in the following sections.

INPUT AND INITIATION

The quantities NR, NS, and NRB that appear

in Fig. A6.1 require the permanent storage; whilst NSA, NRA,

and NRC require the dynamic storage.

In the conceptual, idealized, physical model

of a given acoustical system for its appropriate description

it becomes essential to consider a certain finite number of

different acoustic sources; this number is designated by the

quantity NS. As explained in Chapter 7, in the Monte Carlo

application, the strength time history of each of these NS

sources needs to be replaced by its equivalent finite

interval time representation; from which is selected then a

set of initial variables for the ray tube. The number of such

ray tubes used to represent each of these NS sources, in any

particular block of calculations, is given by the quantity

NR. At any stage during the process (NSA - 1) is the number

of sources already processed, and (NRA - 1) is the number of

ray tubes that have been processed for the NSAth source that

is currently being processed. The ratio:NRA/NR constitutes

a sort of estimate of the probabilities, and in order to

observe the convergence and the reasonableness, it is sometimes



281

desirable to initiate the results printout periodically, say

after every NRB ray tubes. NRC denotes the number of ray

tubes processed after the last printout, and is reset to zero

after printout. During the entire problem, it is noticed

that, NSA accumulates; whereas NRA accumulates only in a part

of the problem corresponding to any particular source. For a

particular source, if so desired, the computation may be

terminated for that part for any ratio NRA/NR at which the

statistical considerations indicate that the accuracy that

has been obtained is sufficient enough.

All problems require the use of spatial

and directional coordinates. In complicated geometries, for

example in cylinders, even if there is a symmetry, as pointed

out by Cashwell (1957), it is not worthwhile to use the

coordinate system dictated by the symmetry, the reason being

that when the ray tube proceeds from one position to another,

the directional coordinates change; on the other hand, since

the direction cosines remain unaltered under the linear

displacements, the Cartesian rectangular coordinate system is

preferable. In the analysis presented here the system that is

used is the Cartesian rectangular coordinate system; this

along with the directional coordinate system is defined as :

Spatial : X1, X2*, X3

Directional : DCl1, DC2, D03

Temporal : T
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Systems encountered in practice involve

the variations in geometry and material properties of the

enclosing bounding surface. A finite approximation for this

would be to subdivide the region into appropriate zones with

zonal index given by, say,

ZN = 1, 2, 3, 0..., ZNMX

presuming that in each of these zones the properties are

very nearly constant. This involves storing the material,

and the geometrical properties as functions of spatial vector,

say, RVEC, locating the position in the region, as well as

the zonal index ZN. Fermanent storage then contains the

quantities such as

Material Properties : MTL(RV&G, ZN)

Geometrical Properties : UTLtRVEC, ZN) .

In such cases ZN is another parameter that must be added to

the list of the ray tube parameters; Summarizing, the

parameters for the ray tube are :

Space coordinates X1*, X2*, X3*

Direction coordinates DC1, DC2, DC3

Time coordinate T

*
Weight Q

Zonal index ZN .

In addition to the material and geometrical

properties of the bounding surface, the quantities that

require a permanent storage with specific memory location in
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the machine are the positions of the receiving points, i.e.

the points at which the acoustical field is to be determined,

and the specification of the sources.

SOURCE ROUTINE

The machine is led from the start of the

problem to the point A in Fig. A6.1; it is here that the

proper assignment of the point source parameters takes place.

After having finished the processing of a source, the machine

returns to this position for assignment of a new source.

In the statistical model, representing the

given acoustical system, the generation of sound is considered

to be an effect of certain distributed point sources. This,

in general would be a constitution of surface, as well as

volume distributed sources, the locations of these being the

points of singularities in the field.

It is possible to specify, in some practical

applications, the exact number of the total point sources with

their locations, origin times, strength time histories, and

directional properties; then these are stored in the permanent

storage of the machine as :

SORS(NSA) SORS(XS1, XS2, XS3, TS, DL(N))

for NSA = 1, 2, 3, .... , NS

where (XS1,XS2,XS3) are the three rectangular Cartesian

coordinates, dimension length, of the source
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position

TS is the time of origin, in seconds, of the source

N is the integral index calling a specific direct-

ional law DL(N) from the permanent storage .

In another important class of problems it

is possible to specify the source distribution function. In

the statistical model, the continuous variation is to be

replaced by its equivalent finite approximation; in general,

this will call for subdivision of the region containing the

energy sources into source zones

SZN(I) = 1, 2, 3, ...

To each of these is associated an appropriate weighting

function

SWF(N) , N 1, 2, 3, ....

Now each source zone is a collection of the point sources,

the number of these sources being directly proportional to

the weighting function of that particular source zone, having

identical strength time histories, and the directional

properties characterized by a specific directional law DL(N).

The selection is to be made at random, until from all of these

source zones, the sources forming the totality NS are duly

processed. A method to achieve this is to generate a random

number, and to use the Rejection Technique. The source

selection is exemplified by a few special cases of interest.
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Volume Distributed Uniform Source

Let the interval of the three Cartesian

rectangular coordinates representing a region in which the

sources are distributed uniformly be given by

XA(I) a X(I) a XB(I) for I = 1,2,3 ( 1 )

Let f(x) be a probability density function (pdf), and R be

a uniformly distributed random number over the interval [0,13

(see Eq. 12, Chapter 3); then

XB

Sf(x) dx = 1; f(x) dx = dx /(XB - XA)
XA

X

--F(x) = .x, az = (X - XA) / (XB - XA)
XA

Hence X = XA + IR (XB- XA) ( 2 )

This relation determines the variable X as a function of the

random number R , and thus results in a selection routine as

shown in Fig. A6.2.

Surface Distributed Uniform Source

For definiteness consider the surface

X3 = constant
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INPUT: xA(I),XB(z)
FOR I- 1,-,5

I=1

x(2n= XA Cr)+ FR (x3(1)-xa(n)1

1=9 No

JES- " " ES

Cor- PUTE SOURCE

ZONrE INDEX

SZN CINDEx3

Fig. A6.2 Selection Routine for a Volne Distributed

Uniform Source in an Interval XA(1) X(I) $ XB(1),

(I 1,2,3)
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to be the surface on which in an annulus of radii RO, and RI

(RO ~< RI) the sources are distributed uniformly; here the

object is to determine the source position inside this given

annular region. In this case since the pdf can be expressed

as

f(r) dr = 2 ~r dr /7L(R1 2 - RO2 )

IR =F(R) = (r)dr = (1 2 R 2  /(R1 2 -R0 2 )

RO

Hence R = R0 2 + R (R12 - R02 ) (3)

This determines the radius R. In order to determine the polar

angle 4 use is made of another random number R, the pdf

here being

f(c17) d4 d4,/ 2 7

= f (x) dx = ( ± 7+ ) / 27U

Therefore 7(2 R- I) ( 4 )

Equations 3 and 4 together form the required set of relations.

for the selection routine shown in Fig. A6.3.
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Cxl,xz)

-XI

INPUT: R0,R1,XL

R- [oLt R(RI~&ZL

7z .Z - u

JIR cos
Xa= R..N

COMPUTE SOURCE:
ZOE INbEX

SZN (INDEX)

Fig. A6.3 Selection Routine for a Surface Distributed

Uniform Source on an Annulus of Radii RO and RI
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RAY TUBE INITIAL SPECIFICATION ROUTINE

In the source routine the source position

and its directional properties are specified for a particular

value of the source index NSA by designating

SORS(NSA) SORS(XS1, XS2, XS3, TS, DL(N)) ( 5 )

Now the machine is led from position A to position B in

Fig. A6.1. It is here the proper assignment of the ray tube

parameters takes place. After having finished the processing

of a ray tube, the machine returns to this point B for

assignment of a new ray tube.

From the permanent storage the quantities

that need to be activated here are the directional law DL(N),

and the set of elementary pulses

EP(NSA, I)'=- EP(NSA, T(I), Q(I)) ( 6 )

where T(I) = (I - ) AT for I = 1 to 2 n

AT is the elemental time length such that the

product of A T and 2 n gives the totalP

activation period of the source given by

Eq. 5 above.

From this set of elementary pulses, representing the strength

time history of the source SORS(NSA), a random selection is



made of one, say EP(NSA, I), its strength being Q(I), and its

time of origin being

TI = TS + T(I) ( 7 )

At this time of origin this selected pulse emits disturbances

in the medium in accordance with the directional law DL(N).

These disturbances are to be represented by the ray tubes,

and followed through along their trajectories. In order to

accomplish thisit is essential to assign the initial direction

coordinates DC1, DC2, DC3 to the ray tube at the position of

the source, where it originates. A few of the directional

laws of practical interest are considered below with the

corresponding direction selection subroutines.

Isotropic Directional Law DL(1)

This is applicable to a point source which

is not on or near to a solid boundary. Then the emission is

isotropic in all directions. In such a case, the selection

of the direction coordinates can be viewed as the selection

of a random point on a unit sphere (Fig. A64) defined by

DC1 2 + DC 22-t DC 32  1 ( 8 )

From Fig. A6.4 it is observed that

DC3 cos 9
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DC3

1ELEMENTAL AREA dA

"~~D -1, , ( ,Dc),o)

•ID -"5 7R -- 1.

-~ ~ I JR c05 }"

bCZ RJbN0

II

Fig. A6-4 Selection Routine for Isotropic Directional

Law DL(1)
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and the elemental area dK. on the spherical surface is

given by

dA =sin9 de d -- dC3 d P

Let f(DC3) be the pdf, and 1R be, as before, a uniformly

distributed random number over the interval [O,13 ; then

since

f(DC3) dDC3 = 2 sine de / 471 = dD C3

Dc3

= F(DC 3) =  f(x) dx = (D03 + I)

-1

Hence DC 3 2fR -1 ( 9 )

The remaining two components DC1, and D)2 are then determined

by using the equation for the circle (Fig. A6.4) in the

DC01-DC2 plane to give

R = (DC1 2 ± DC2 2 ) = (1 -DC3 2 ) ( 10 )

and another random number K to provide the polar angle ,

just similar to that in the case of Fig. A6.3

= 7(2R - l) ( 11 )
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Then Eqs. 10 and 11 together define

DC1 = R cosC , DC2 - R sinck (12)

resulting in a routine shown in Fig. A6.4 .

Cosine Distribution Law DL(2)

This refers to a point source emanating

from a surface; let the direction of the outer normal,

pointing into the medium, to this surface be defined by

the direction cosines

DC 1 0, DC2 0 , D3 = 1

then by definition the cosine distribution has the pdf

f(DC3) = 2 DC3 with D03 > 0

DC03

R F(DC3) f f(x) dx DC3 2

0

Hence DC3 R (13)

With this restriction, the other direction components DC1,

D02 are chosen by selecting a point on the unit sphere

(Fig. A6.4); resulting in a routine shown in Fig. A6.5.
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DC3 104

.. =.( 1 - -G.

-W= (2R- 1)

Cl - Rcosq
R sIN

Fig. A6.5 Selection Routine for Cosine Distribution

Law DL(2)
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General Distribution in the Upper Half Directional Space DL(3)

Occasionally it is necessary to consider

a point source with DC3 : 0 having some experimentally

determined distribution of the direction component DO3,

supplied in a tabular form. Let

DC3(0) = > DC3(1)> .... > DC3(I) = 0 ( 14)

then defining F(I) to be the probability of DC3 being greater

thanDC3(I), it can be tabulated as

F(0) = 0< F(1)< .... < F(I) = 1 (15)

With the use of these tables a routine as shown in Fig. A6.6

(Cashwell, 1957) can be constructed, where the method of

interpolation is adopted for the determination of the exact

value of DC3; the other components DC1, and D02 are then

obtained, as before, by locating a random point on the unit

sphere (Figs. A6.5 & A6.4) with the above computed value

of D03.

Prejudiced Directional Law DL(!)

This corresponds to a prejudiced point

source in which certain range of directions need to be

sampled more thoroughly than the others. For example,

consider a case in which DC 3 is uniformly distributed on
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.NPUT: CL Z), F (Z)

FOR ALL I

i1= 1R' ' F-. ."

-i ( R < F )IJ E
DC = DC(z + (R- F () ( Dc3(r-1) - DC3( )/( ( -F) -rcI))

R =- (- 8051 I
R

= 7FCIR-1)

DCI R cos4'i": " '" " bc RSINI

Fig. A6.6 Selection Routine for General Distribution

in Upper Half Directional Space DL(3)
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the range -1 5 DC3 . 1; but more important are the

directions corresponding to the range

- DC3 DC3P 0 ( 16)

Here it is possible to give an equal likelihood of the ray

direction on this prescribed range of Eq. 16, or its

complement by assigning the respective weights (DC3P + 1),

and (1 -DC3P); the total weight processed for the totality

of NR ray tubes being given by

NR (DC3P - 1) - NR (DC3P - ) NR (17)

The routine for the selection with these weight factors is

shown in Fig. A6.7.

RAY TUBE PROCESSING ROUTINE

The assignment of these direction coordin .

ates, as explained in the last section, completes the initial

specification of all the parameters for the processing of the

ray tube. Now the machine is led from the position B to the

position C of the flow diagram (Fig. A6.1). The position C

forms the main core of the Monte Carlo procedure; this is a

position at which the lifetime of the ray tube is processed.

The technique for the processing is similar to that given

in Chapter 8.
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INPUT: DCP

WT (1- DC3P)

DC3 R+WT(I-R)

7R<'/z WT= I+ DC3-- C=D3 R
Afo

DC = R -cos'

Fig. A6.7 Selection Routine for Prejudicied Directional

Law DL(l.)

-b



299

ANALYSIS RUTTINE

The data accumulated while the ray tubes

were followed are now analyzed and the results are printed.

The magnitude of the statistical variability is determined

by evaluating the variance and the standard deviation, as

shown earlier in Chapter 8.



Appendix 7.

CURVED BOUNDARY PROBLEM MONTE

CARLO PROGRAMIE

This appendix gives in full details the

results of the application of the proposed Monte Carlo

technique (Chapter 8) to a curved boundary problem that

is under investigation (ChapterlO). Included herein is a

complete listing of the programme that was used in these

calculations on the CDC 6400 of the Computing Center of

the University of Virginia. The printout results

accompanying this listing correspond to the pressure

values shown in Fig. 65.
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PRGA _jjJIo."L tnJQUP5XNPT.TA*LPE,_OUTPwUTU
00000203 COMMON/CORNLW /IRAN,RANNO,OC(4) ,NRANRC

000003 EX~TERNEAL orSRAY
C MONTE CARLO CALCULATIONS FOR TRANSIENT ACOUSTIC FIELD INSIOE A

- C CYL IN0o I CAL -.DU.GISj2_JQ TpA- _5AFPS
C INPUT QUANTITIES

000003 PEAO(5,4.C2)O0,TPPI,A,C, KR(I),I=1,3),TPtS,(EStI),.11,3),A,4,oCTL*
IO)PHI,EPSLON,0NST 9 R"7AD(5,I.OIJNS,NR,NROIRAN

C VARIABLES IN NONDI"qENSIONAL FORM.
* 000065RSTR2SQRT(XR(jjU*2,XR(2J9Q2)/A S ZSTRER(3)/A 5 TPSTR=C*TP/A-

IPSTRO*2)/TPLSTR t AOSTR-APIN/A I X3t4XSTR=DCTL/A ' Di~iI-aPNI
000116 A2STR=(I.-A0STR)/X3MXSTR S RAzAOSTR 6 R8sA2STR S RADS2=RSTR*92

* IPI-EPSLDN63))
03014.5 W-4IIIE(6,500)O3,TP,PI,AC,TPLS,ONST,(XSCI.,IU1,x3),(XR(I).IUIS).

-________ AI. OCT L 9 QO .RSIR LIPS TRj Z ST RtZ TP S-TI TPSRATTjASTRLl
2A2ST:Z,OPHI,EPSLON,FNRM t WRITE(6,50I)MStWR,NR89IRAN

* 0005'. J4=0 t 00 19 Jxi,250 I P(J)=*0
000260 19 C3NTINUE A 00 20 1=1,3 S XSCISaXSIJ,'A
000265 20 XR(I?:XR(II/A I RAOS2E-RSTR#9f2 5 NS4=l I NRA=NRCz0

C RANDOM SELECTION OF THE RAY DIRECTION COSINES
_0....IL2Z-CALL. DCI

C DETERMINATION OF VORTICES OF THE RAY TUBE TRIANGLE AT REFERENCE PT
000306 AI(Ip:OCII SXI(I):XS(I)+U*OCII)
000313 23 CO~jIPlJE t XI(4.)%XIti) I xI(5)=XI(bf-xI(2) t XI(6)-XI(3).OPHI
0003Z3 XIE7)=XII).0PSI % XI(9)=XI(3) S YOISRAY(XI(4dlXI(5pXI(6, ,ES(l)

IXS(2),XS(3)) i AI(4)-(XI(4)-X3(L))/YO S AI(5=vX(5)-XS(2))/Y8
C____ PAtJOOM PULSE_SELECTIONFROM SOURCESTRENG!H TIME HISTORL__________________________________

00-03*4.0-- AI(6)=4XIQ-XS(3ii/Y6 I YO=DISRAyEiXlir) ,X14o ,XI (9lxs~IJ,XSO2),
1)S(3)) I AIU?)-(XAI)-XS(1))/Yo 3 AI(d)-CXI(8P-XS(2)j'YO S AI(91=1 .-.-.
2xXI9)-XS(3))/YD I RREF=RAYOIS=DISRAY(XI(1),XI(2),XII3),XS(I,,XS(2)

0003?6 3,XS(3)) I CALL G.RAN I TIxRAtNNOfTPSTR/4. I PREF*COS(PI*RANNO/2.0 _ _--.-
0063?6TPO=.S*TPSTR t T12-TPO-TI 1 T13=TPO+TI % TI'.-TPSTR-TI

C DETEOMINATION OF REFERENCE RAY TU9E. AREA ARTO FOR.NOR4LZArIP9N
0004.05 8001S AYtXI J1),XI 121,XI fjJ,XZ (4),XI (5),XI (64)
0004.11 eI.DISR7AY(XI (fl,.EI (84,XI (94,XI (4.),EI (5),X1 (6))

0004.23.. 83-.5*(8+91+82) % Y1-SQRT(03'(B3-0,'c3-B±£.c83-o2,o S ART0*YI
0004.41 tiC0LSfl=C I IF(NR.LT.NRA) GO TO 110

C--- DETERMINATION.OFPOINTOFRAY_COLLISION WITH THE DUCT SURFACE* 000445 24 00 32 J=1,7,'3 S A 12 =-41(J) /A iiJ 1) i J 2 +AI(J.2/AI (J~i + S A-1 +
tA12*-Z+(RB*A32)'-2 Z B=A120(XI:J+)-ll2*XI(J+I))-RB*A32*(RA+RD*(XI
2(J.2)-A32*XI(J.1))) Z C=(RA+RB#(I(J+2-324LXrCJ+I))s.2.(XIJ). - -.
3A12*XI(J.1l*Z 9 CALL ROOTIA99,CUMX,UNN)

000512 IFfAI(J*14.GT.0.0,29,30
005?..29 -XCU.14)=UMXK gO-T70_________

000522 30 XC(J+1):UP14
C DETERMINATION OF THE DIRECTION VECTOR OF THE REFLECTED RAY

000524 31. A2?-XC(J*1)-XI(J.1p S XC(J)-XI(J)+AI2*A22 S XCIJ.24.XI(J+21+A32,*A2
121 .t11-2*XC(J) t B2=-29XC(J+I) S 83=2*R8*(RA+R89XC(J,2))

0005446 ASt)9S0RT(B!*f2+8202.3**2, S L81=@1/ASQ I 82-82/ASO.S B3=83/ASQ
*000560 ALFACOS--(AI(J)*014AI(J41)9B2,AI(J42).B

3  S AR(J)-AIEj)*2*ALFACOS* ________________________

- -'- -00003 2 lt A AR(J+1)'A1(J+14,2*ALFACOS*92 I AR£J+24EAIIJ+2)*z.ALFACO-sq.83800 32 CONTINUE S -!F(XC43).LT..0.OR.XC(3).GT.X3MXSTR) GO TO 22 
-H



000619 RAYDISwPAYOIS +DSA(ClC2vC(1Xi)X()Xl1
- .C. 1'4IS COMPLESTES.D~i"WT.-FMIL RE LECTE ______

000623 tCOLS4NSNCOL SN,1
C DETERMINATIONI OF THE NONZERO COMPONENT OF THE POINT COMMON TO
C PAY AND THEODUCT AXIS

M0624. XRF3wXC(3)-XCf2)9AR(3)/AR(2) I IFIZStR.LT.XC(3)) G0 TO 42Z
C OETEPMINATION OF POINT ON REFLECTED RAY BEYOND THE DUCT AXIS

-.000',33 . ... IF(ZSTR.L.F3)52t62...____________________________________________
000640 4.2 00 4.6 JR1971 3 I A12u.AR(JJtAR(j.1)
0076.1. A32=AJZJ/ARIJ.J 9 A- l.0.Al2vv2 I Ba(XCtJJ-A±24XC(J,1)J.ALZ
000654. C-RA0S2-(8/AI2)**2 S CALL RtOOTOA,BPCUHX,ulNN)
000662 IF(XCtJ4).GT.0.v'.394.1
0006? 1.3 X~t3(J+1J-UMN 9 GO TO 4.5

-035672 44 .1. aJ+) UffX.. ___________________________________________
03067'. 1.5 A22=XRc(J+1)-XC(J,1) S XRO(J)BXC(J),A129AZ2 S XROU.*2)nXC(J+214

1 A32 A 22
00070. 1.6 CONTINUE
000706 B0,3=ISRAY(XR9(1),XR8(2),XRB(3),XR(.3,XRBgSpERgq63,
000712 B1-rOISRAY(XRB(7p,XRB(8),.XRe(q),Xo(.),XRg3(5),XRB(6b)

-- go 0 717-,ZmO(3RA Y_______________(8_,t______________1)_______21t_____%_V_
000721. 032.5*b0.NZ,0+2) S Y1-SORTEAiS(B34(B3-oo)9ga3-o1).co3:BsZ,),ARTO
00071.3 Y2DSA(RL#R2,R3))R~)XB2pR11 160 TO 100

C DETERMIHATION OF POINT ON REFLECTED RAY PRIOR TO DUCT AXIS
000751 52 00 56 J21,703 S Al2aAR(JPAR(J.1,
030755 A3Z-ARCJ,2)/ARtJ,11 S Acl.D+A12**Z I 82(XC(J)-ALZ*)xC(J+lf*AIZ

-000765 CuRAJS2-(B/AIZ)*02 I-CALL. RflOI.A9BsCsUftisu"lL _____________________________________

000773 IF(XCJ .G.O.053S1.
001000 53 )R1.J+1)=UMX S GO TO 55
011303 54. YRA(J*1J=UNNM
001305 55 A?22XRAU.13)-XCcJ.I3 9 XRA(J)=XC(J),AIZ*A22 I XRA(J+2)-XC(J,21.

1A32' A22
-001015 Sb .CfT I 'JE.___________________________________________
001917 s0oIoSRAY(XRA(i), ,RA(2) ,XRA(31,XRA(.),XPOA(51 ,XRA(6))
001023 D1xISRAYXRA7)XRXRARa9,XA9,XRAI,RA(5)XRA(6).-
001032 B2=OISRAo(RA(73,XRA(8),XRA(9),XRA(1),XRA(2.XRA(3,
001035 C32.5*(BO+81*82p I YixSQRT (ABS (63'(83-B0)'(83-B1['(I03-8Z) 3 )IARTO
001051. Y2=!)ISRAYCXIR(1,XR(2),XR(3),XRAC1),XRA(2),XRA(3)) 160O TO 100
_QW52..62--DO 63. J=,9- X.I0 XCJI SAI4.AJ0~________
00106? 63 CONTINUE I GO TO Z.

C PENFTQATIO4 IN TEST SPHERE, PRESSURE CONTRIBUTION
*001071 100 IF(Y2.LT.EPSL04)105,106
001076 105 DLR'S

1
3V (2.'ABS((AR(3)'XRF3.(AR(1)sXR(13.AR(Z).XR(21,AR(33.ZST),

1"42+EPSLOtP2-RIAOS2-(XRF3-ZSTR, "*21I Y3=SQRT(YI) I Y5=RREF*Y3
001123., . PR1 =POE.F* (Y5 40LR/2.JeU I ORIY6c-RRfFtY5 ______________________________________

C91131 J:IFIX((TI4Y6)/TPLS'R,+1JJSTRr I IF(J.GT.JM)P(J)=P1J3.PRI
001143 JzlFrx((T12+Y6)/TPLSTR)+I-JSTRT S P(JJuP(J)-PR1
001152 JzIFIX((TI3+Y6)/TPLSTR;t1-JSYRY S P(J)uPi-J3-PRi
001161 J=IFIX(UTI4*VY6)/TPLSTR),1-JSTRT S IF(J.LT. 100)PlJlvPfJl4PRI
001173 106 IF(NRA.LT.NRi22,I10
001200 -. 119 00 115 J=1.100 $ Pt_3)=VNOROP(J) ________________

001201. 115 CONT114UE S WRlTE(6,S06)(jPfj),Jz1,100)
001220 l-ITE(6,21?)I~tAN S wRITE(695i0)ARTO

C FORMATS
*00123'. 212 FORMAT(5JC'IRAN .'1103
001234. 401 FORMAT(ar1cs

00123. 50 FOPMAT(IHi,30VX'TRANSIENT ACOUiSTIC FIELD IN CYLINDRICAL DUCT*3(/I
I37x4MONTE CARLO 14ETHOO'3(/)IOXOPREASSIGNEO CONSTANTS IN OltIENSIONAI\



SI1L FORMNIFPS SYSTEM*//5X*SOURCE STRENGTH FACTOR QO u *E10.'*3X*SOUR
S. 2CE PERIOD TP .'ElO,s3X9PI uYEIU.A§/5X*DUCT RADIUS A *EIO.4._3X

Z*WAVE SPEED C x *EL0.403X.ELEMENTAL TIME INTERVAL TPLS OE13.4/
35X*CHARACTERISTIC MASS DENSITY OF THE AEDIUM ONST v fEl0.4/
45X*SOURCE CARTESIAN COORDINATES XS(1t2,3) a *3(EIO.4,2x)/
55XfRECEIVER CARTESIAN COORDINATES XR(ti23) a *3(EL0.4z.2X)/5x~ODUCT
6 MINIMUM RADIUS AMIN a *EIG.4,3X*DUCT LENGTH OCTL * *E1O.4///
710 XVARIA8LES . .. NONDIESZALEDR M/35ER'o a#E16t8.2XeRSTR a *
8E1~6.B,2x*TPSTR a *E16.8/5x*ZSTR -*EI6.8,2X#ZTPSTR =:E16.8,2X*TPLST
9P *E16.8.2X*JSTRT a 14 /SK*AOSTR = fE16.0z,2X*X3MxS
ITR *E16.5,2X*A25TR x *E16.8,2XDPHIO=DPSI= *E16.8/5X0RADIUS OF TH
2E TEST SPHERE EPSLON . 9E16.8/SX*PRESSURE NORMALIZATION FACTOR
3F'ORN = *E16.8)

001234. 501 FOOMAT(SX9IS = 12s2XNR. = z 52X*HX.R0 *I52XfIRAm..Q 
__///)001214 506 FO~MAT(2Ix'PRESSURE VALUES IN THE NONDIMENSIONAL FORH

0
*/

125Xv(NOTE TIME INDEXaINOEX+JSTRT)*/5(SXtILX,E16.83))
001234. 510 FORMAT(SXRAY TUBE AREA FOR NORMALIZATION AT REFERENCE RADIUS

1AREFx.5 ARTO = *E27.20)
001234 STOP $ END

. C . ARITHMETIC. 51ATtMET.iAMALQS,



THArjE0

PROGRAq LENGTH INCLUDING I/O BUFFERS
096444

FUNlTI0N ASSIG14ENTS

STATEMENT ASSIGNMENTS
22 - 000275 24 - 000445 29 - 000517 30 090522
31 - 009524 42 - 000640 43 - 000667 44. - 000672
s5 - 00C674 52 - 000751 53 - 001000 54 - 001003

55 - 0C1005 62 __ 001062 100 . 001071 105- .001076.
106 - 001173 110 - 001200 212 - 001260 401 - 001263
402 - 001265 500 - 001267 501 - 001426 506 001435
510 - 001452

BLOCK ANMES AND LE14GTHS
CODRNLM - 000110C

VAPIARLE ASStr-M ENTS
A - 0023C3 At 001620 ALFACOS* 002370 AHN - 002307
AR - 001631 ARTO - 002357 ASQ - 002367 AOSTR - 002325
A12 - 002361 A2STR - 002330 A22 - 002366 A32 - 002362
B - 002363 .00 .002352 BL m 0023... . 2 =____ - 00235
83 - 002355. C - 002304 DC - 000002001 DCTL - 002310
OLR - 002373 ONST - 002313 DPHI - 002311 DPSI - 002327
EPSLON - 002312 FNORN - 002334 1 * 002305 IRAN - 000000001
J - 002336 JH - 002335 JSTRT - 002324 NCOLSN - 002360
NOXOL - 001567 NR - 002315 NRA - 000006001 NRB - 002316
NRC .. - 0000070C01 NS .- 002314 NSA _ - 002337 P -m001706
PI - 002302 PREF - 002345 PRI - 002376 00 - 002300
RA - 002331 RADS2 - 002333 RANNO - 000001C01 RAYOIS - 002343
R3 * 002332 RREF - 002342 RSTR - 002317 TI - 002344
TIZ - 0023147 T1I3 - 092350 TI4 - 002351 TP . 002301
TPLS * 002306 TPLSTR - 002323 TPSTR - 002321 TPO - 002346
-U 00234.C-- UMN -02365 -- UMX.- ---. O02oz3.6.lXC . 001653
X! - 001642 XR 001604 XRA - 001664 XR8 - 001675
XRF3 - 002371 XRT 001607 KS - 001601 X3HXSTR- 002326
YO 002341 Yi 032356 Y2 - 002372 Y3 - 002374
Y5 - 002375 Y6 - 002377 ZSTR - 002320 ZTPSTR - 002322

START 0F CONSTANTS--
001240

START OF TEMPORARIES
001465

.START OF.INOIRECTS
011531

UNUSED COMPILER SPACE

020000



UN-

SN11nobetis 3
0143 1 tiaAl3d SUM

42**(CX-CA)*Z**(ZX-ZA)+Z**(TX-TA))12!DS-AVbSIC 110000
-(f-X'ZA,'9As9XG2X'lX)AVbSJO NOIAONO.4

r-I



DISRAY

SUBPROGRAM LENGTH
000050

FUNCTION ASSIGNIMENTS

STATEMENT ASSIGNMENTS

OLOCK NAMES AND LENGTHS

SVRAIA9LC.ASSIGN*eNT-

DIS.AY - 003047

START OF CONSTANTS
000030

STAPT OF TEMPORAs 
_00G031

START OF INDIRECTS
00004?

UNUSE0Q CO P LRjP0AE
024100



oN3 s NbnlU S f,999QTj9/(wvbj)jvo-jj. NhVd
V9Q9D119*TI-NVbI*NVbl S t9QqQjjq/NVbjsjj S 

ZOGGOD
(913'ONNVbANVbl/ MINjo3/mCwwo3 zaccoo

rl



SUBPROGRAM LENGTH

000025

FUNCTION ASSIGNMtNTS ....

STATEMENT ASSIGNMENTS

OLOCK NAMES AND LENGTHS
C D R N L U - 0 0 0 0 1 0 .. ... .. . .

VARIABLE ASSIGNHEITS
E - 000002CO01 IRAN - 000000C01 11 - 000024 RANNO - 000001Co01

START OF CONSTANTS
000016

STAPT OF TEMPORARIES
00'20

START OF INDIRECTS
300024

UNUSED COMPILER SPACE-
024500



U - SV8ROUTZNE-V-GNTLI4OX)
000193 COMtION/CORNLW /IRAN,RANNO,-DC(41),NRA,HRC-
0001)03 CALL GRAN
000306. DC(3:SORT(RANEO)
o0000 PAO.SQRTtI-DC(3)vf2)
0000I4 CALL GRAN~00 OC 5i___ I ,-RN4_-t
000023. OCfI)z.ADOPCOSIPHi
000026 OCM=JRAO*SIMCPH1)
000031 . NRA=NRA~j
000033 . NRC=4RC,1
000035 RETURN
000035. E_

- - - -----



DCINTL

SUBPROqGRAM LENGTH
000052

.FUNCTION ASSrGN'ENTS

STATEMENT ASSIG NMIENTS

BLOCK NAMES AND LENGTHS
CORNLW - 000010

VARIABLE ASSIGNtMEITS
DC - 00002CO1 NPA - 000006C01 NRC - 000007C01 PHI 000051s
RAO - 000050 RANNO - 000001C01

START OF CONSTANTS
000037 .

STARf OF TEMPORARIES
000040

START OF INDIRECTS

UNUSEO COMPILER SPACE
024400



SUBROUTINE ROOT!t(A,6G 1VN 4VNN _____ ______________"_________________

U3C'~1, '.QPT(BflZ
6
2,4Cl 9 UA=t-0*Oi/h 8 U~a(-C-O)/A SU~IXNAMAXI(UAPUB)

00002?UPIN-AMtNI(UA,UB)
000031 RETURN SEND



ROOT

SUBPROGRAM LENGTH
000055

FUNCTION ASSIGNMENTS

STATEMENT ASSIGWiENTS

tLOCK NAMES AND LENGTHS

YARIABLE ASSIGNM NT
D - 000052 UA 030053 UB 000054

START OF CONSTANTS
000033

STT O TEMPOPA_ _ _____OOGt,3'

START OF INDIRECTS
000052

UNUSED COMPILRPACGE
02440



CORE MAP 16.59.2'. NORMAL CONTROL 000130 014433 3 3
--- TIMF---LOAD M')or ---- -LL-- ---P--... --SE--***--LL ***** - FWA LOAD--LWA LOAD**itN 0i-
FMA t AC)ER C4744 FMA TARLES 052770
*PROGRAM*..--- ADODRESS- --LABELEO-*--COMMON*-
THANED 000110 CORNLW 000100
DISRAY 306:54
GRAN 016624 CORNLW 000100
OCINTL___ 006651 

0_ __ _ _ __1_0_ROOT 006723
SIXCOS 3C7000
SORT 007077
SYSTEM 007142 SCOPE2 007142
GETBA 01t.0254
XNPUTC _010273
KOD R 010410
KRAKER 011662
OUTPTC 012733
soIt 013025
-- UNSATISFIEO EXTERNALS ---- REFERENCES



TRANSIENT ACOUSTIC FIELD IN CYLINDRICAL DUCT

MONTE CARLO METHOD

PREASSTSIED CONSTANTS IN DIMENSIONAL FORM(FPS SYSTEM)

SOURCE STRENGTH FACTOR 00 1.0000E00 SOURCE PERIOD TP = 2.0000E-03 PI a 3.1416E*00
DUCT RADIUS A x 7.0SO1E*00 WAVE SPEED C = 1.1000E+03 ELEMENTAL TIME INTERVAL TPLS * 5.000E-05CHAOACTEoISTIC MASS DENSITY OF THE MEDIUM ONST = 2.3780E-03
SOURCE CArPTESIAN COORDINATES KS(1,2,31 = . 0. .
RECEIVER CARTESIAN COORDINATES XR(l,2,3) = i.0000E+00 3.0000E+00 1.0000E+01
OU-LMlNIMu,. PADIUS N? .Q0+U DLEN GTH.PCTL a j,10Q0+02

VARIABLES IrN NONOIMENSIONAL FORM

Q0 1.L00000000E+00 RSTR 4.21Z63r021E-O1 TPSTR * 2.93333333E-01
ZSTR = 

1 3 3 3 3
E+O6 ZTpTR . 666667E00 _TPLST F___LL3333E03 JSTRT = 190ADSTR = 1.0000300E+00 X3MKSTR 1.6C000o000E*01 AZSTR 0 0 DPHIvDPSIu 1.O0000OOOO-1

AODIUS OF THE TEST SPHERE EPSLON = 1.OCO0OOE-01
PRESSURE NOPMALIZATION FACTOR FNORM = .-9.3339?524E-03
NS 1 NR 5000 NRB = i IRAN = 22758845

PRESSURE VALUES IN THE NONOIMENSIONAL FORM
INOTE TIME INDExa=INOEX+JSTRT)

1 0. 2 0. 3 0. 4 0. 5 ,6 0. 7 0. 8 0. 9 0. 10 3.-,-,1. 0. -- -I. Q.. ,14 0. 1. Q, --- _516 0. 1? 0. 18 0. 19 0. 20 3.
21 0. 22 0. 23 0. 24 0. 25 G.26 0. 2? 0. 28 0. 29 0. 30 3.31 0. 32 6. 33 .0. 34 0. 35 0.Ts 0. 3? 0. 38 0. 39 -1.03850833L-03 4041 -7.19269..96E:7.!! %Z 

. .-C______.....28..9.E. 
. .....80....WK-3 4555!__A46 -L.38178749E-03 47 -5.90468331-. 48 -1.16271611E-03 49 -3.3158057ZE- 4 50 -L.3d7:ogBE-t

51t 3.0639404E-04 52 1.71917419E-03 53 7.61404901E-04 54 1.22018659E-03 55 J.56 0. .? -9.46930788E-04 58s 2.76742377E-03 59 2.66128828E-03 60 3.61 3.59776666E-04 62 3.22555296E-03 63 2.16374829E-03 64 6.38181.446E-04 65 1.27?55628ZE-C366 1.38178749E-03 67 5.90468331E-04 68 1.16271611E-03 69 3.31580572E-O04 7 1.J8/jo81,8-L
471 6.

3
5M16

3
7E-04_ -3.6'706558E-o', .6140'90E-0 '8 846fj-0' 75 .76 0. 77 9.469307588E-04 78 -2.76T423??77E-03 79 -1.65277995E-43 80 0.81 3.59487?229E-04 82 -9.58699342E-04 83 -9.05269351E-04 84 9.42215641E-04 85 3.86 0. 87 -1.15500914E-03 8s 0. 89 0. 90 3.91 -9.42215641E-04 92 -1.35446763E-03 33 0. 94 -1.37503536E-03 95 0.96 0. 97 0. 98 0. 99 0. 100 0.

RAY TUBE AREA FOR NORMALIZATION AT REFERENCE RADIUS AREFa.5 ARTO * 4.992006%?471547?10106399-25



r 05f1/ 2 UtNIV. OF VIRGINIA SCOPE 3.3 APR 01,72 SU" 2%

16.59.15.TW9AE96
16.51.15.THANED,1ZC25UwT20oC461000. BALAKRISHNA
16.59.15.0 THAtnEDAR AEROSPACE 8
16.59.15.RUISt,, pTHAtEO)
16.59.10.COMMO I(THANED)
16.59.19.THANED.
16.59.Z3. IRFL - 014500) CP 002.747 SEC..
16.59.23. PP 004.060 SEC.
16.59.23. 10 000.403 SEC.
17.00.03.STOP
17.30.01.CP 039.280 SEC.
17.00.01.PP 004.448 SEC.

17,00/.O ED .. L0004.1 SEC

THANE96 //// END OF LIST //// 0000504 LINES



P
3
CG2A" VRNSTO (INPUT, OUTPUT, TAPES -INPUT, TAPE6 -OUTPUT)

000103 (,':;L' XR(Tl oKS( I I PRESt5,60g ,JIRN51

000215 PE-AO(5,'.02) OO,TP,PlAC, (XR( I~ ,Il13) ,TPLS, IXS(I) ,Is1,3) .AMN,OCTLI
iD0iI ,EPtLOIJONST 9 REAO(5o4.0i NS,N1,NR9 ,0RAN,NRP1 ,J4AX

800103 P.T=T~'(XP.(1)'.+XR(2)..2)/A I ZSTRsXRS3/A f 7PSTRaCOTP/A
000115 ZTPST~xZSTR.TPSTR.S TPLSTP.=C*TPLS/A S JST.RT=SQRTIZSTR"*2. +.__ . ------

IRSTR**2)/ IPLSTR ACSTRxAMNAI X3?IXSTRs00TL/A S PSzP41 -

1
9
! ,D'I7L,O2,RST'RTPSTRZSTR.ZTPSTRTPLSTRJSTR~tA..TRX3MXStR

26?..b',UIPHI,EPSLON,F4ORP4 S WRIOL (6,501)NSNqNR8t4RPT
000270O fli 31 5.~i,IflPT Z REA9(5,40ZUPRES(N,J1,J-IJHAXf
000305 39 CONTIPIUE t WRTTE(6,209l(IRNN,N:I,NRPT) 1 00 40 J=1,JIIAX
000324 4C0 ITE(%f)2CI)J,(PRES(N,J),N=1,NRPT)
000344' WRITE(6 .207) S 00 4.3 J.1,JAX S XlsX2=0.0 S 00 41 IvlNRPT
00935'. 41 Xl1xlP$-3(IJ) i Xt=X1/NeRPT S 00 42 Ixto NRPT . . -..-.

100365 4.2 V2=Y?4P0F'Sfr,JJ-j-x **? 9 VRNS=X2/NRPT I STON-SORT(VRNS)

0010'0 4.3 WITE(6.,218)J.XIfVRNS,S70N,XiP,XI4
C F1"4ATS

0004.31 20? FO-.4AT(39XIVAR1ANCE AND DEVIATION ANALYSISO//10OTIME IN0EX*5X*"Ell
1~j14 <VA$RANCE#I1XOEVIAT1ON9?X.gflE4N).(0EVIAT1ON)uZXecnEA,..goEVI___
2*1101) *//)

000431 208 FO0Ml4T(12X,13,5(4X,EI6.8)1
000431 209 FOR1AT(IOX*PRESSURE VALUES IN THE 10ND1IENSIONAL FORM SUMMARY OF

ITHE MONTE CARLO CALCULATIONS f5 RUNS)";/24X-RUN 1*,15X*RUN 2,#15X*
2'RUPJ 3*#i5X*RUN 40,15X#RUN 50//IOX*IRAN VALUEff4XvI$,4Q(2x,18)//)

0021.31 401 FOVImATL 19) ___ .*
0004.31 4.0? FrJPHAT(614.8J)
0004.31 500 F-'). IA(tN1,30KI'ANSfENT ACOUSTIC FIELO' IN CYLINDRICAL OUCT'34/1

137YlM'r*ITE CA2LO 4ETHO*3f/)111X-P.-.ASSIGNEO CONSTANTS IN DIMENSIONA
11 FCR4(FPS SYSTE;'//5X*SOURCE STRENGT1 FACTOR QC *El0.4.3xKlS0UR
2CE Pr Ir~l TP = ElO.',3X'PI = *E11.'/5XAUUCT RADIUS A - OEIJ.'.,3X
36WAV Sc'FEO Cr *Ellq.4,3XELEmENIAL TIMIE INTERVAL IPLS z 0,E10,4t -.

35'(c'4AQPGERZ3TZC "ASS DENSITY OF THE 4EOXUI DNST -*E10.4/
41SIV.CE CARTESIAN COORDINATES XS(1,2,3) a* 3(Ei0.1.,2X)/
55X*~tEIVE~f CARTESIAN COORDINATES XR4192,3) -*3(El0.'.,2Xl/5X*OUCT
6 MININU" RADIUS AMIN a 'E10.1,3xOUCT LENGTH OCTLv*I 04/
713X-VARIA3LES IN NONOI14ENSIONAL FORM//5X*QO z *Elb.592X4.RSTR a
8Flc,. 8,2)f#TPSTR a E16.8/5x*ZSTR ='E16.4,2X*ZTPSTR =-E16.6,2XqTPLST --
9P *El,.6.2X*JSTPT - 0I'4 /5X*AOSTR n E16,6,2X-X3M.XS

ITR *E16.8,2J(*A2STR a Ei16.8,2X*DPHIaOPSI= *E16.8/5lc'RADIUS OF TN
2E TEST SP'IERE EPSLON - vE16.Aj'5X#PRESSURE NORMALIZATION FACTOR
3F4OP4 c E16.81

000'.31 501 FORMAT(59*NS 8 '12,2X
4
NR * 15v2XNRO *15,ZX*TOTAL NUMBER OF RUN

0004.31 iSNTO I~) - .
000413



VRNSTD

PROGRA4 LENGTH I4CLUDING 1/O BUFFERS
095544

FUNCTION ASSIGNW0NTS

STATEiSNT ASSIGImFNTS
41 - 000354 42 000365 207 - 000452 208 - 030471
209 - 009475 401 000522 402 - 000524 500 - 000526
501 - 0065

BLOCK NAMES AND LENGTHS

VARIA9tE ASSIrtIMENTS
A - 0C1435 ANN - 001441 AOSTR - 001462 A2STR - 001465
C * 0143E Ol'TL - 0014 2 DNST - 001445 OPHI 001443
_DPSI. -_ 0C1464 -._EPSLOL* 001444... FNORM .. _ 001470. I .- 001437
IRAi - 01451 IRuN - 0014?4 J - OC1471 JMAX - 001453
JSTPT - OC1461 N - 001431 NR - 001447 NRB - 001450
NRPT - 001452 NS - 031446 PI - 001434 PRES - 000750
10 - 001432 RA - 0014166 RB - 00146? RSTR - 001454
STDOr 001475 TP - 001433 TPLS - 001440 TPLSTR - 001460
TPSTR - 001456 .VRNS _001474 XR ...... - 0007 42. XS ..... .000745.
xi 001472 Xi -. 001477 XIP - 001476 X2 - 001473
X3mXSTR- 001463 ZSTP - 001455 ZTPSTR - 001457

START OF CONSTANTS
000435

STAOT OF TEMPORARIES
000677

STA'T OF INDIRECTS
000741

UNUSED O'COMPILER SPACE
002530



COVR' NAP 12.25..'. 010-70AL CONTROL 046LOO 013200 c. J ,' i,;
--- TIME --- LOAD MODE --Li--L2 --- YPE -------- USER---*+---CALL ---- :,---W LOA0--LW4 LOAD-9'Ek . Otth--LLt1-- .

FWA ILnAOER 04744.' FWA TABLES 033116
-PP.OrkAN----AD(fRESS- -LA9ELE0---COMH0N--
VPNSYD OC0100
SOP? OC5644o .
SYSTEM 505707 SCOPE2 00570?

ItIPUTC OCio'07
KODER 007155
KRAKER 0104.Z?
OVTOTC C1150O
slot 011572
---- U04SATISFIED-E XTERMALS,-!-T-. R EFERE~flsL.

41H

OD'



TRANSIENT ACOUSTIC FIELD IN CYLiNDRrCAL OUCT

MONTE CARLO METHOD

PRLASIGIEJ cnoj1..TARTS IN DIMENSIONAL FWUIEFPS SYSTEM

SOI1RCE ST*Q'ITH FACTO )o a0 1.00OCE#OO SOURCE PERIOD* TOS.tOE0 I311EU.-___
O'JZT RADIUS A -?.50CIE*0 WAVE SPEED C x .1000E+03 ELEMENTAL TIME INTERVAL TPLS 5.OOOOE-05
CII1:ACTLPISTIC AlS DENSITY OF THE MEDIUM DOaST x 2.3780E-03
SOiRCE CA91'fSIAN COOW')ZNATfS XS(1,2,3) . V., 8. D.
RE(CEIVEP CAOTESIAN COO)RDINATES XR(1,2,3) ai.0000E+O0 3.OOOOE.O0 1.608OE+01
DUC;T MIP$IwL~m RA)IS A4IN 7.500DE400 DUCT LENGTH DCTL s1,2000E+02

VARIAFL:-S I1N N04-IMENSIONAL FORM

DJo x 1.CC:0:Cl0oE+' RSTR a 4.21637021E-01 TPSTR 2.93333333E-o1
ZSTo, 1.3333330 ZTPSTR a 1.6266666?E+00 TPLSTR a 7.33.333333E-Q.O .JSTRT . 190................. .A:3srR a 1.3I03:CEO9 X3HIxSTR a 1.6000000DE+01 A2STR 3 0. DPHIaDPSIm 1. 00063-000E-12
PAJ!U O)F 1HK TEST -.P"[IE EPSLOff 1.00C000001-01
PRESSURE POPIALIZATION FACTOR FNORM a -9.3339752i.E-03
NS 1 ~I R *5030 NR9 I TOTAL NUMBER OF RUNS NRPT m 5

PRESSURE VALUES IN THE NONDIKENSIO*EAL FOR"W SUMMARY OF THE MONTE CARLO CALCULATIONS 15 RUNS)

RUN I PUN 2 RUN 3 RUN 4 RUN 5

IRA~4 VALUE 22758845 ..- 340981.29 -.-. 376~5833? 256L2963-_. 33~

1 -?.i'326'.096E-0. -b.21930565E-0. 0. 0. *-3.31.921942E-'.
2 -2.26e5536ZE-03 -1.

1
.523181SE-03 -9.7827390BE-04 -1.738b327IE-03 -1.43939228E-ZJ

3 -1 S.~1.-3 -. RA82T5'E-03 -Il.i54.1.297E-O3 -i.811.772E-.3 -l.?b'9d94944-jJ
4.. -j.56r40j~lE-03 .-- 3.161094341E-03 .. 0. -,-1.9'.87025lE-03 ,9.3j85579x-l4. .5 -1.27556282E-03 -1.06276331E-03 -3.615Bii93E-03 -1.19897270E-03 -L.

7
45S

3
4245 %-:

6 -1. 35178?'.9E-03 -3.01355043E-03 -1.44'5(:8435E-03 -2.00593521E-04. -6.43736124.E-.-4
7 -5.9CG.6'33!E-0. 0. -6.7202i1.1'E-Oa. -2.4AD022701-33 -1.174947-,j -j3
8 -i.162715L1E-J3 -1.51000771E-03 i.26i2710.E-. S.383018BIE-'. -1.072335C6E-;J
9 -3.?15' :572E-9'. 6.21930565E-04. -6.958t635E-. -4.60465875E-A. -1.10868144'.-.3

10 -1.38736139E-04 -5.0502205SE-0. . 5.177932r5E-'. . ,63lil63E-05. -Z.6Z6641ft,'4-j5 __

12 1.71gi7419E-03 -Z.060321.37E-o3 1.557,'819E-03 i.853895OlE-04 0.
13 7.61'.14907E-04. 8.53843907E-04, 1.22O0.1.A3aE-03 -3.39632134.E-03 1.92L441blbE-13
14 1.22318619E-03 1.22810741E-0S 2.0ir3565E-03 2.8)8645603E-04' -8.'33383bb54- ..
15 0. 7.95786584.E-04. 2.999(,3513E-03 -5.4609J570E-04. 1.17012C1lt-*3

- . 16. -. -1.72031925E-03 .- 1.1541,1963E-03 . .8639?'.77E-03 4.ZZ'IiE.il.E-3
17 -9. '.'93O74SE-0'. -8.1.b298095E-0. 0. 1.1228303LE-03 3.2.bC64711 -J3
18 2.767'.2377E-03 2.615C527E-03 3.530ii622E-04 1.9J1731.31E-03 -13 .GtL 3
19 2.r,62?28E-03 3.27939530E-03 1.7547872LE-03 -3.70783450L-04 3.41.153jjd -j

?I 3.1977'56SE-04 1:84093833E-03 1.1.C7e5?l5E-0. 4.16174108E-04 i.31398:flE. 3
-... .... .22 . 3.22;55215E-03 3.671111'.3E-03 2. 97 7113E-03 3.2i321267E-03 .34.' ...........

Z3 2.1fAI74529E-03 5.99AB7514E-03 1.717139-96E-03 3.3199972SE-03 6.172532,:
2s- 6,.35i814446E-01. 3.36582924E-03 4..24,194773E-04. 1.94.87,5251E-33 .355z-,
25 1.27S5' 2aZE-03 i.97307763E-03 3.61565S19GE-03 4.0 6686335E- 3 2495.-*-- *26 1.3l.8?'.9E-03 3.3135504.3E-03 1.63662312E-03 ).8673b643E-i. 1.67i36o823--.4
27 5.9G1.668PE-'. 1.5608011.IE-03 3.58028065E-14 2.'.8002270E-33 3.07o839,1Z-j
28 *1.t62716liE-33 2.6666001&E-03 -6.1.797170tE-05 1. 3244 3 10I1E-0 3 2.7 2



29 3.31583572E-04i -6.l324IM 04a ?.3802t'.89E-I, L.9669;o126E-03 3.2Z452 jE;
31 0. 9.0383209s7E-04. -4.180263043E,04. 4.763111igE-0S 1.4,5968(8:r.;
31 6. 3SP? I 17E-0, 1.260587'13C-03 1. A 8529E-03 -2.8173SO51E-04 .3'.v-j
32 -3a.70651SE-4 3.04249020E-03 -I.55723819E-03 -1.85389531E-34 2..?6'.Z,33 -7.614C493?E-04. -4.71836379E-04. 2.52'.131?IE-04 4.2649195')E-03 -1.9214.4616E.-33
24 l.S8.8I.601-0 -i.01925312E-03 -2.00173565E-03 -2.89864'503E-0 1.83ti50.tcz-J3!s 0.. 9.31532366E-04 -Z.064293B1E-03 5.'.6479570E-04 -* 3~~36 0. -5.S1229216E-0.3 1.15'.5196DE-03 -2.563974??E-03 -2.048797961--33? 9.%bs30?755E-04I 3.3809355)3E-03 0. -1.12280081.E-03 -2.3493317- 3301 -2. ?6?'.21T7F-03 -2.&019521?E-03 7. 131'.?042E-o', 0.1 ' bCL5. j39 -1.65277995E-03 -3.27939530E-03 -1.9?94395.E-03 9.?0783450E-0. -1.3553459~--3
40 0. - . .2.9S185945E-03-.-..-2.59965568E-03 0.~.. . - . - -8.573575Z0E-J5.~ .'.1 3.594.87229E-04 -1.21900?7TE-D3 -1.40785?£OE-a. -4.16174108E-04, -9.?A%651k.(?E-)'.
4.2 -9.55'1342E-04 -2.'.1869224E-03 -1. 99961522E-03 -i.51457996E-03 -Z.591J2!b.- 5343 -9. 052')93S£E-01# -1.1064.7550E-04. -5. 63031995E-04. -1.50522156E-03 1.152641i72i 3.44. 9.42215641IE-04 -1.84735233E-04 -4.24194 ??E-04 0. -1.6duo8b7L- 345 0. .- 9.10314519E-03 0.-2:86?89125E-03, -6.845469SgE-;'.
4') 3. .. 0. .0.- .-. 377 0 '. -? 61432?E- 4 4 766693b1E-j44? -1.155jO14E-03 -1.5608014LE-03 -2.0875'.843E-UJ 0. -1.9U976-j
48 0. -1.156592'.7E-03 -1.5523544L3E-03 -i.86270289E-03 .- i.6Q4 9I3:fI-- 349 0. -8.6'.58'76?E-06 -1.6892??72E-03 -1.81703942E-33 -2.i1537?6c- 350 0. -2.?1000222E-03 -9.97672327E-05 -3.7070425E-05 -1 19330391E-.'
51 -9.4221564LE-04 -?.9707178?E-0, -1.71856744,E-04 3.?0770425E-05 -1.0134?b04t-j3
52 -1. 35446763E-03 -1.66852033E-03 -2.23020909E-04 -2 , 3.02.'3-' 25276029?.- 3 -**53 0. -3.7900758SE-o -2.320'44433E-03 -8.68596216E-04. 0.5'. -1.37503536E-03 -1.28853493E-04 0. a. -4:29213187E- 355 1. -1.7283i925E-03 2.23020909E-04. 0. -2.48140251E-.33

VARIANCE AND DEVIATION ANALYSIS

TIME I fd!E X "EAN..........VARIANCE . DEVIATION _ IEAN)+(DE.VIA.TION).(EAN-(OEVATIUN)

1 -3.?!5223321f-Ols 9.08075603E-l8 3. 0147563BE-04 -3.37476827E-05 .63-985ZJ2 -1.5751941I4E-03 1.789918?3E-0? 4.2307-311E-O'. -i.15201953E-33 -L.9-3dl6d4.)-53
3 -2.37709603E-03 3.1519916?E-06 1.77538494E-03 -6.01711097E-Je. -'..152.897E-C34 -1.52821056E-03 . 1.12076330E-06 1.0D5865133E-03 - 4. 69 549539E -04_ -2.58687219v:- !____

6 -1.336j5031E-03 '3.19308?93E-07 9.58835920E-04 -3.761444'63E-04. -2.245?5b..;--.,3
7 -9.E3-.91936E-3'. 6.989994S0E-07 8.3606l887E-04 -1.4?'.3013BE-3J4 -1.8195536AE- ,3a -6.16125979E-04. 6.37911074E-07 7.98693354E-04 i.8256731'5E-04 -i.4L.819'E-33
9 .- 3.9'.l3f55lE-04 3.28'.b5?60E-0F 5.7311)325E-04. 1.76182773E-04. -9.6A05587bzJ.

10 -2.a93Z2144eE-35 .1.08637924E-07 . 3.2960,>676E-04 -- --- 3b08670461E-04. -3.5053.8'.Ca '
11 -8.?3855i11E-0, 1.30372G7'.E-06 1.1L.180591E-03 3.0195379.E-a34 -I.9d161..E-
12 Z. P 213 52E-04- 1.5~53412628E-06 1.36131IosE-03 1.64.1694.03E-03 .IIo.7j
13 2.1'if'4333E-04 3.530428631E-05) 1.87894354.E-03 2.i50587i3E-03 -1.667Z99i'.L 314 7 .612151'.E-0. 9.85403?g'.E-07 9.92675073E-04 1.7519?022.-03 - 2 . 2 3 3

7991o= 415 8.84024SILE-04 1.47867317E-06 1.2160.0706E-03 2.100203165E-03 -3.319524'.gt -416 8. ! 15 34,'6E-016 5.3462094.3E-06 .2.311715E-03 -__3.15034662E-33-£.-.427t,:-3
17 4.75127327E-04 2.2046723'3-36 1.484BL382E-03 1.9599.IISE-03 -1.. qb8b.9r - jla 1.1329'.q94E-03 3.115515'15E-06 1.7b505242E-.03 2.89803236E-.03 -

6
.
32
1
3
'.83E-J419 2.63325356E-33 3.71?33355E-06 1.9267?4169E-03 4.55999556E-03 7.abS,12173--.4

20 3.~E64r5'.0'E-04. 2.16500098E-06) 1.47133423E-03 1.53984.964E-03 -1.11-9'8ZE'
21 1. 142 513 3 6E- 34 4 24396755E-0? 6.51457408AE-04. 1.46570841E-03 1.621'335q?;-J..
22 3.471fi)tIE-03 - 1647571?4E-OF 4.05902912E-04..3.87751902E-13 ..

3
.
36 5

71319C-:3 __23 2. 79A.341?8E-03 3.3h?65472E-06 1.8351 1845E-03 4.54852023E-33 .683t-L
24 1.?82V1133E-03 . 1.25181979E-06 1.11584753E-03 2.90173863E-J3 6o6404377bE-J4'25 2.tiZl 8 8E-03 1.06675881E-06 1.0.3284017E-03 3. ?05G2915E-03 . I.b3934861E-J326 1.4.371 9?30C-03 8.68791228E-07 9. 32JO971JE-04. 2.3692826)1E-03 5.051C315~1E-'4.
27 1.F,1!?43i3C-03 1.1C3593'.6E-o') 1.05052056.E-03 2.66376369E-13 5.62722563"j4'
28 1.??3'-3 1.1,69377.5E-05 1.05211109E-03 2.6233'.479CI-03 5.1912266ZE- '.29 1.1294-62IOE-03 1.78313699E..06 1.33534i5?E-03 2.46480i3o2E.03 -2 aS879'. 3E-;4.
31 1.42i277896E-C3 1 .61142859E-05 1.30 054934E-03 2.7233?830E-o3 1.Z2229o23E- '.32 6.9?551784E.04 3.16795089E-06 I.?7q79384E-03 Z.'.?2425o2E-03 -1.3732L6 .- 333 2.7253025?E-o'. 4.4752'.259E-06 2.1154?692E-03 Z.3d80070E-03 -1.8 21'.bLtb.- 334 -2.79574213E-14 1.661P998A~E-06 1.2.8863664E-03 1.039C32..4E-03 -1.5b86?38'.:-,3



321

-
N

-4

w
 

w
 
L
I
 

L
 

~w
L 

.11.1 11

m
 

1- 
r4 

m
.tN

.m

U
'
'
0
0
~
.
.
u
.
.
 

.
9
.
M
P
.
E
N
'
.
0
'
N

.Q
U

 
N

 
~ 

It 
U

 .7
 

t 
a
, 

I
 
0
0
 

0
 
4

t
i
s
l
m
a
g
 

e
m
e
 

e
m
i
Q
o
l
u
 

r

w
L

eee. 
L
1
6
1
4
.
 

t
I
C
 
t
i
E
 

6
 

.
1
 

w
 1

.0
.0

0
 a, 

m
 

N
 

t- 
4..9fU

 
' 

N
 

0
 

U
%

 0
M
 

.9~
 

.
7 

'E
9
0
. 

t0 
0
, 

ttI -t 
9

0
0
 

I 
0
 
E
M
.
 N 

.0
0
 

'
4
 
4
 
4
.
.
 

4 
U

%
 N
O
.
0
.
0
0
l
 

u
 

v



05/1/ Ut'!V. OF VIRGINIA SCOPE 3.3 APR 01T72 SUN 29612.25.37.V nsT45

12.25.7.VPRTnft20?SWT100,COC41000. 
ALAKRISHNA

12.25.37.0 THANEIR AEPOSPACE 8
12.25.37.MAP(PA-T)
12.25.3?.RU'I.

12. 25* 4. .L0C
12.25.44. (RFL - 013230). CP 000.975 SEC.,
12.25.4. PP 003.719 SEC.
12.25.44. 10 000.345 SEC.
12.25.45.STOP
12.25.45.CP 001.532 SEC.
12.25.45.PP C03.964 SEC.

.. 2Z.Z5.45.10 . C00.379_ -SE.

VNST45 //// ENO OF LIST I/// 0000349 LINES

........ - ............... . ............ ......... ........ ...... ...... ..........-



Appendix 8

CURVED BOUNDARY PROBLEM NORMAL

MODE PROGRAMME

This appeidix gives in full details the

results of the application of the Normal Mode solution

technique (Chapter 9) to a curved boundary problem that

is under investigation (Chapterl0). Included herein is

a complete listing of the programme that was used in

these calculations on the CDC 6400 of the Computing

Center of the University of Virginia.

In fact here there are two programmes. The

first is Just a pilot programme. As its output it shows

three tables. The first table gives the characteristic

values KM( KOj in Chapter 9 ), and the expansion coeffici-

ents AM( c< Oj in Chapter 9). These characteristic values

were taken from Watson (1962, p. 748), and the expansion

coefficients were then calculated using Eq. 48 of Chapter 9.

The second table gives the Bessel functions of the first

.323
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kind and the zeroth order for arguments ranging from 0.to

85 at a step of 0.1, these values were taken from McClain

(1962). The third table gives the different arguments that

will enter in the evaluation of the integral given by Eq. 32

(Chapter 9.) when the source period is divided into 40

subdivisions. Corresponding to these arguments, as required,

the Bessel function values were obtained by using the

method of linear interpolation in conjunction with the

above tabulated values.

The subsequent programme listing corresponds

to the programme in which the approximate evaluation of

the definite integral was carried out by means of the

Chebyshev's formula for n= 5. The printout results

accompanying this listing correspond to the pressure values

shown in Fig. 65.



LI.
PROGRA4 DUCTNRMIINPUT,OUTPUTTAPESsINPUT#TAPE6sOUTPUT)

00000~ DIMENSION xS(3),XRi3)IP50)E(26),ANI261s4UX(10),8ESLJ0(O51)s
1ARGMNT(851)tRGMNT(26,501,XIB(50),INDX(50)

000003 REA0(5,4026O0,TP,PI,ACtIXRII),I31,3),TPLStIXS(I)zlta,3)
00003? RSTR=SQRT(XR(L)*24+XR(2)**2)/A S ZSTR-XR(3)/A $ TPSTRvC*TP/A
000051 ZTPSTJ=ZSTR*TPSTR S TPLSTRwCeTPLS/A t JSTRTsuZSTR/TPLSTR
000057? JMAX=ZTPSTR/TPLSTR S TOPITP=Z.*PI/TPSTR S JMAXIuJMAX-JSTRT
000066 WRITE(6,500)00,TPPZ,AtCTPLS,(XS(I)tIai,3t)(XR(lblIul,3),QO0RSTR

ITPSTR,ZSTR,ZTPSTR,TPLSTRJMAX,JSTRT
C CALCULATION OF THE BESSEL-FOURIER SERIES COEFFICIENTS

000142 READ(5,402)ALPHA30,E),Isl1,26) $ WRITE(6p,50)
000162 READI0~9,04)IAM(iZI,26) $ REAO!I,'04J(ESLJOlil atlShI
0o0~06 4iftE6,003)It0E4I),AM(I2,IIw2hs) g WRITRE6,9103 £ 00 20 lei,st
000231 20 ARGMNf(I):.1P(I-I.) t WRITE(6,503)(IARGNTII)OBESLiJO(I)I.1,851i
000253 ZSTR:=ZSTRO*2 S WRZTE(6,512)
000260 XLZ3tR'S DO 22 Jz1,JMAXI S XL=XLtTPLSTR
000265 22, XIB(J):SQRT(XL'*2-ZSTR2) S D00 26 HM1s26 S EIGENsEtN)
000301 00 24 Jr'i,JMAX t RGMNT(M,JasEIGEN'XI9(J
000311 24. CONTINUE S MRITE(6,514)HEIGEN
000322 26 WRITE(6,514)I(J,RGHNT(NJ),J:IJMAX1) $ WRITE(6,516)
00034? 00DO 2 J:=1,JMAXI S INOX(J)=IFIXtI0.

9
RGMNT(il,J))1

000361 28 COtNTINUE S NRITE(6,514 HINDX(J),RGMN(ITJ),JsiatJHAXI
C FORMATS

000401 402 FORMAT(SE16.8)
0001 404 FORM4T(8E10.3)
000401 500 FORMATfIHI,30x*'TRANSIENT ACOUSTIC FIELD IN CYLINDRICAL OUCT*3(/)

13?X*NORNAL MODE METHOD*3(/)10X#PREASSIGNEO CONSTANTS IN DIMENSIONA
1L FORM(FPS SYSTEI*//5X*SOURCE STRENGTH FACTOR Q0 = E10.4.,3X*SOUR
2CE PERIOD TP z *E10.4,3XPI : *E10.41/SX.ODUCT RADIUS A a 9E10.4,3X
3*NAVE SPEED C = *E10.4,3X*ELEMENTAL TIME INTERVAL TPLS = *E10.6/
145XSOURCE CARTESIAN COORDINATES XS(1,2,3) a *3(E10.4s2X)/
55x*RECEIVER CARTESIAN COORDINATES XR(1.t?3) z *3(EI0.4,2X)//
610X#VARIAOLES IN NONDIMENSIONAL FORM*//SXOQ0 a *E16.8,ZX*RSTR a
7E16.5,2X'IPSTR = *E16.86/SXZSTR =*E16.8,2X*ZTPSTR *'E16.8,2X9TPLST
BR = *Ei6.0.2XJMAX: I *14,2X JSTRT z 0I4///)

000401 502 FORNAT(20XOCURVED BOUNDARY CIRCULAR DUCT*//
110XK*TABLE 1 CHARACTERISTIC VALUES KM AND EXPANSION COEFFS. AN'/)

000401 503- FORMAT(5X,(13,1X,EIO.31X,E10.3,4X))
0001.01 510 FOMAT(10XOTABLE 2 BESSEL FUNCTION J0(X) f(IeXJ0t(x))6/
000401 512 FORMAT10X*TABLE 3 VALUES OF ARGUMENTS FOR THE BESSEL FUNCTIONS J

10 IN THE INTEGRAL FOR THE PRESSURE FIELD'//)
000401 514 FORMAT(SX, (13,IXEIO.3gIX))
000401 516 FORMAT(I0oXPILOT INDEX FOR ARGUMENTS FOR M .1*/.

000401 STOP
000403 END



DUCTNRM

PROGRAM LENGTH INCLUDING I/0 9UFFERS
013150

FUNCTION ASSIGNMENTS

STATEMENT ASSIGNMENiTS
402 - 000423 404 - 000425 500 * 000427 502 - 000538
503 - 000546 510 - 000553 512 - 000562 514 - 000576
516 - 000602

- LOC~ NAMES AND LENGTHS . ............

VARIABLE ASSIGNMENTS
A - 007061 ALPHA08- 007076 AM - 000754 ARGNNT - 002543
AUX - 001006 BESLJO - 001020 C * 007062 E - 000722
EIGEN - 007103 I - 007063 INOX - 006774. J - 007101
JMAX - 007073 JMAXI - 007075 -JSTRT - 007072 - 007102
P - 000640 Pr - 007060 QO - 007056 RGMNNT - 004266
RSTR - 007065 TOPITP - 00707' TP - 007057 TPLS - 007064
TPLSTR - 007071 TPSTR - 007067 XIO - 006712 XL - 007100KR - 000635 XS - 000632 ZSTR * 007066 ZSTR2 - 00707
ZTPSTR - 007070

START OF CONSTANTS
0004.05

START OF TEMPORARIES
000611

START OF INDIRECTS
000630

UNUSED COMPILER SPACE
022600



CORE HAP 16.36.01. NORMAL CONTROL 000100 020604 000000 000006___---TI."---LOAD MODE L--l--2 -- TPE -----. -- USER--*.---CALL ..........-. FWA LOAD--LWA LOAO--LNK CON--LENGTH--
FWA LOAOER 05i44 FWA TABLES 053123
-PROGRAM ---- ADDRESS- -- LABELEO---CONNON--
OUCTNR" 000100
SQRT 013250
SYSTE" 013313 SCOPE2 013313
GETBA 01C425
INPUTC 014444
KODER 014561
KRAKER 016033
OUTPTC 017104
510$ 01?176
---- UNSATISFIED EXTERNALS---- . REFERENCES



TRANSIENT ACOUSTIC FIELD IN CYLINDRICAL DUCT

NORMAL NODE NETHOD

PREASSIGNED CONSTANTS IN OIMENSIONAL FORN(FPS SYSTEMN

SOURCE STRENGTH FACTOR 00 1.0000E+00 SOURCE PERIOD TP a 2.000E-03 Pl a 3.1416E+00OUCT RADIUS A * 7.5000SE+0o NAVE SPEED C a 1.1060E+03 ELEMENTAL TIME INTERVAL TPLS 5.O000OE-05
SOURCE CARTESIAN COOROINATES XS(1,2.3) a * O.
RECEIVER CARTESIAN COORDINATES XR(l2.23 a l*OOO0E#0O 3.0000E+00 1.000eOOc+

VARIABLES IN NONDIMENSIONAL FOR" ...

QA 1.00000000 RSTR a 4.21637021E-81 TPSTR a 2.93333333E-01
ZSTR a 1.33333333E+00 ZTPSTR = 1.6266666?E*00 TPLSTR 7 .33333333E-03 JNAX a 221 JSTRT z 181

CURVED BOUNDARY CIRCULAR DUCT

TABLE 1 CHARACTERISTIC VALUES KH AND EXPANSION COEFFS. AN

1. 3.832E*00 3.721E-04 2 7.016E+00 -1.046E-04 3 1.I0TE+OL -1.381E-01 4 1.332E+01 -5.556E-055 &.647E*01 2.635E-05 6 1.962E+01 -2.661E-05 2.276E+01 -1.388E-01 6 2.s9g0E+01 -5.398E-069 2.905E+01 2.099E-05 10 3.219E+01 -3.437E-07 11 3.533E+01 1.739E-05 12 3.847E+01 -3.357E*0613 4.162E*01 1.226E-05 14 4.4T76E+01 -6.263E-06 15 4.790E*01 1.009E-06 16 5.104E+01 -9.560E-0617 5.419E+01 -2.304E-06 18 5.733E+01 -1.071OE-05 19 6.047E+01 2.244E-06 20 6.361E+01 *6.041E-0621 6.675E+01 4.856E-06 22 6.990E*01 4.251E-06 23 7.304E+01 6.446E-06 24 7.618E+01 2.463E-06__ _?.932E +g 6.354E-06 26 8.2461E01 -2.245E-06
TABLE 2 BESSEL FUNCTION JO(X) (IXJX)tx)

1 0. I.000E+00 2 1.00E-01 9.975E-01 3 2.000E-01 9.900E-01 4 3.000E-01 9.776E-01S 4.000E-01 9.604E-01 6 5.OOOE-01 9.385E-01 7 6.C000E-01 9.120E-01 8 7.OODE-01 8.812E-019 8.000E-01 8.463E-01 10 9.00E-01 8.075E-01 t11 1.000E+00 7.652E-01 12 1.100E+00 7.196E-01. 31.200E*00 6.7T1E-01 . 14 1.300E+00 6.201E-01 15 1.400E+00 5.669E*-01 16 1.500E#00 5.118IE-0117 1.600E*00 *4.554E-01 18 1.?700DE+*00 3.980E-01 19 1.600E+00 3.400E-01 20 1.900E*00 2.818E-0121 2.000E+00 2.239E-01 22 2.IOOE*00 1.666E-01 23 2.200E+00 1.104E-01 24 2.300E+00 5.554E-0225 2.400E+00 2.507E-D3 26 2.SOOE+00 -4.838E-02 27 2.600E+00 -9.68IE-02 28 2.700E+00 -1.424E-0129 2.800E+00 -1.850E-01 30 2.900E+00 -2.243E-01 31 3.000E+00 -2.601E-01 32 3.100E+00 -2.921E-0133 3.200E*0. -3.202E-01 34 3.300E*00 -3.443E-01 35 3.400E+00 -3.643E-01 36 3.500E+00 *3.801E-0137 3.600E+00 -3.918E-01 38 3.700E+00 *3.992E-01 39 3.800E+00 -4.026E*01 40 3.900E+00 -4.01SE-0141 4.00OE+O0 -3.971E-01 42 4.10QE+00 -3.887E-01 43 4.200E+00 -3.766E-01 44 4.300E+00 -3.b610iE-0145 4.400E+00 -3.423E-01 46 4.500E+00 -3.205E-01 47 4.600E+00 -2.961E-01 48 4.700E+00 -2.693E-0149 4.800E+00 -2.404E-01 50 4.900E+00 -2.07E-i01 St 5.000E+0*O *-L.776E-*01 52 5.IOOEO0 -1.443E-0153 5.20OE*Q0 -1*103E-01 54 5.300E+00 -7.560E-02 55 5.400E+0O -4.121E-02 56 5.500E+0O -6.843E-0357 5.600E*DO 2.69TE-OZ 58 5.7?00E+00 5.992E-o02 59 5.800E+00 9.ITOE-02 60 5.900E+00 1.220E-0161 6.000E+00 1.506E-01 62 6.100E+00 1.773E-01 63 6.200E+0O 2.017E-01 64 6.300E+00 2.238E-0165 6.400E+00 2.433E-01 66 6.500E+00 2.601E-01 67 6.600E+00 2.740E-01 68 6.700EO00 2.051E-0169 6.800L00 2.913E-01 70 6.900E*O0o 2.981E-01 71 7.O00E+0 3.001E-01 72 7.100E+00 2.991E-0173 ?.20E+00 2.951E-01 74 7.300E+00 2.882E-01 75 7.400E*00 .2.786E-01 76 7.500E+00 2.663E-0177 7.600E+00 2.516E-C0 78 7.?00E00 2.346E-01 79 7.800E+00 2.154E-01 80 7.900E+00 1.944E-0181 8.000E+00 1.717E-01 82 8.IOOE*O0 1.475E-01 83 6.200E+00 1.222E-01 64 6.300E+00 9.601E-0285 8.400E#00 6.916E-02 86 8.500E+00 4.194E-02 87 8.600E*00 1.462E-02 8 8.700E*O0 -1.252E-0Z89 8.OOE*00 -3.9232E-02 90 8.900E+00 -6.525E-02 91 9.OOOE+00 -9.033E-02 92 9.O10E+00 -1.1k2E-0193 9.200E+00 -1.36?E-01 94 9.300E+O0 *1.577E-01 95 9.400E*00 -1.768E*01 96 9.500E+00 -1.939E-0197 9.600E+00 -2.090-O1 98 9.700E+00 -2.218E-Ol 99 9.O80E*00 -2.323E-01 100 9.900E*00 -Z.403E-01t101 1.0001E01 -2.459-01 102 1.010E+01 -2.490E-01 103 1.OZE02 01 -2.496E-OL 104 1.030E+D1 *2.477E-01105 1.0401E01 *2..34E-01 106 1.0501E+01 -2.3661-01 107 1.060E+l1 -2.276E-01 108 1.OTOE+01 -2.164E-01109 1.080E+O01 -2.032E-*01 110 1.090E+01 -1.81LE-01 111 1.100E+01 *1.712E-01 112 1.110E+01 *1.528E-01
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